TensorFlow深度学习实战——基于循环神经网络的词性标注模型
0. 前言
词性标注 (Part-Of-Speech tagging
, POS tagging
) 也被称为语法标注 (grammatical tagging
) 或词类消疑 (word-category disambiguation
),是将语料库内单词的词性按其含义和上下文内容进行标记的文本数据处理技术,涉及识别文本中每个单词的语法类别,如名词、动词、形容词等。词性标注对于理解句子结构和语义至关重要,广泛应用于各类大规模语料库的自然语言处理和文本挖掘。
1. 词性标注
在本节中,我们将使用门控循环单元 (Gated Recurrent Unit, GRU) 层构建一个用于进行词性 (Part of Speech
, POS
) 标注的网络。POS
是指在多个句子中以相同方式使用的单词的语法类别,词性包括名词、动词、形容词等。例如,名词通常用于指代事物,动词通常用于描述动作,形容词用于描述事物的属性。传统上,词性标注通常是手动完成的,但现在基本上已解决了此问题,最初通过统计模型实现,而近年来则主要是通过端到端的深度学习模型完成。