PyTorch生成式人工智能(19)——自回归模型详解与实现

0. 前言

本节通过训练一个基于长短期记忆 (Long Short-Term Memory, LSTM) 网络的文本生成模型,系统介绍了自然语言处理 (Natuarl Language Processing, NLP) 任务的核心技术流程。首先对《安娜·卡列尼娜》文本进行分词和索引化处理,构建词元到整数的映射关系。模型采用序列到序列的训练方式,通过预测下一个词元来学习文本特征。在生成阶段,模型以自回归方式逐步生成文本,并可通过温度和 Top-K 采样调控生成结果的随机性与创造性。虽然 LSTM 模型存在长程依赖等局限性,但该实践完整涵盖了分词、词嵌入、序列预测等 NLP 基础技术,为后续学习 Transformer 和注意力机制等高级模型奠定基础。

1. 文本生成模型分析

训练文本的选择取决于期望的输出内容。本节将以一部长篇小说作为训练文本,它其丰富的内容使模型能够有效地学习和模仿特定的写作风格,大量的文本数据有助于提升模型对文本风格的掌握能力。同时,小说的篇幅通常不会过长,这有助于控制训练时间。对于本节的长短期记忆 (Long Short-Term Memory,

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值