生成式人工智能实战 | 条件变分自编码器(conditional Variational Autoencoder, cVAE)

0. 前言

本节首先概述条件变分自编码器 (conditional Variational Autoencoder, cVAE) 的核心思想:在普通 VAE 的基础上,通过将标签信息作为“条件”输入,使得生成模型可以在特定类别上进行数据重构与新样本生成。接着详细讲解 cVAE 的理论推导,包括证据下界 (Evidence Lower Bound, ELBO) 的条件化形式以及重参数化技巧。最后,使用 PyTorch 构建 cVAE,并使用 Fashion-MNIST 数据集进行训练。

1. cVAE 简介

条件变分自编码器 (conditional Variational Autoencoder, cVAE) 是基于变分自编码器 (Variational Autoencoder, VAE) 而来的一种生成模型,它在原始 VAE 的基础上引入了条件变量(例如图像的类别标签),使编码器和解码器在“潜变量”之外,还同时接收类别信息,从而能够在生成阶段针对特定类别生成样本。相比于无条件的 VAEcVAE

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值