生成模型实战 | 深度分层变分自编码器(Nouveau VAE,NVAE)
0. 前言
变分自编码器 (Variational Autoencoder, VAE) 作为深度学习生成模型的重要分支,具有独特的优势,与生成对抗网络 (Generative Adversarial Network, GAN) 和自回归模型相比,VAE
具有采样速度快、计算可处理性强以及编码网络易于访问等优势。然而,传统的 VAE
模型在生成质量上往往落后于其他先进生成模型,尤其是在处理高分辨率自然图像时表现不佳。为了应对这一挑战,深度分层变分自编码器 (Nouveau VAE
, NVAE
) 通过神经架构设计的创新,推动了 VAE
性能的提升。