生成模型实战 | 深度分层变分自编码器(Nouveau VAE,NVAE)

0. 前言

变分自编码器 (Variational Autoencoder, VAE) 作为深度学习生成模型的重要分支,具有独特的优势,与生成对抗网络 (Generative Adversarial Network, GAN) 自回归模型相比,VAE 具有采样速度快、计算可处理性强以及编码网络易于访问等优势。然而,传统的 VAE 模型在生成质量上往往落后于其他先进生成模型,尤其是在处理高分辨率自然图像时表现不佳。为了应对这一挑战,深度分层变分自编码器 (Nouveau VAE, NVAE) 通过神经架构设计的创新,推动了 VAE 性能的提升。

1. NVAE 技术原理

1.1 变分自编码器基础

传统变分自编码器 (Variation

评论 40
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值