引言
Pandas是Python中最为广泛使用的数据分析和操作库之一,特别适用于处理结构化数据。该库的名称源自“Panel Data”的缩写,意为面板数据或多维数据。Pandas基于NumPy构建,继承了其高效的数组计算能力,并在此基础上进一步扩展,提供了更高层次的数据结构和数据分析工具,如Series
和DataFrame
。这些数据结构旨在使处理“关系”或“标签”数据的工作变得更加简单、直观,并且具有强大的表达能力。
Pandas的目标是提供快速、灵活和表达式丰富的数据结构,以便于数据的清理、转换、聚合和可视化。无论是数据科学家还是分析师,Pandas都能有效简化他们的日常工作,使得大规模数据的处理和分析变得更加高效。Pandas特别适合处理来自CSV、Excel、SQL数据库、HDF5等多种格式的文件,能够轻松应对从数百行到数百万行的数据。
核心特性
1. 数据结构
- Series:
Series
是一种类似于一维数组的对象,它由一组数据和与之相关的标签(索引)组成。Series
的行为类似于NumPy的数组,但与NumPy数组不同,Series
对象可以存储任何类型的数据,包括整数、浮点数、字符串、对象等。Series
的索引不仅可以是整数,还可以是任何其他类型(如字符串、时间戳),这使得数据的访问更加灵活和直观。 - DataFrame:
DataFrame
是Pandas中最重要的数据结构,它是一个类似于电子表格或SQL表格的二维表,由行和列组成。DataFrame
的每一列都是一个Series
对象,因此可以存储不同的数据类型(如整数、浮点数、字符串等)