术语和定义
- 数据管理(data management):数组资源获取、控制、价值提升等活动的集合。
- 数据资产(data asset):组织拥有和控制的、能够产生效益的数据资源。
- 数据战略(data strategy):组织开展数据工作的远景和高阶指引。
- 数据架构(data architecture):数据要素、结构和接口等抽象及其相互关系的框架。
- 元数据(metadata):定义和描述其他数据的数据。
- 数据生存周期(data life cycle):数据获取、存储、整合、分析、应用、呈现、归档和销毁等各种生存形态演变的过程。
总则
- 概述:数据治理源于组织的外部监管、内部数据管理及应用的需求。
- 目标:数据治理的目标是保障数据及其应用过程中的运营合规、风险可控和价值实现。
- 任务:组织应通过评估、指导和监督的方法,按照统筹和规划、构建和运行、监控和评价以及改进和优化的过程,实施数据治理的任务。
框架
数据治理包含顶层设计、数据治理环境、数据治理域和数据治理过程四大部分。
顶层设计
- 战略规划:战略规划应保持与业务规划、信息技术规划一致,并明确战略规划实施的策略。
- 组织构建:应聚焦责任主体及责权利,通过完善组织机制,获得利益相关方的理解和支持,制定数据管理的流程和制度,以支撑数据治理的实施。(“责权利”——责任、权力、利益 )
- 架构设计:应关注技术架构、应用架构和架构管理体系等,通过持续的评估、改进和优化,以支撑数据的应用和服务。
数据治理环境
- 内外部环境:组织应分析业务、市场和利益相关方的需求,适应内外部环境变化,支撑数据治理的实施。
- 促成因素:组织应识别数据治理的促成因素,保障数据治理的实施。
数据治理域
- 数据管理体系:组织应围绕数据标准、数据质量、数据安全、元数据管理和数据生存周期等,开展数据管理体系的治理。
- 数据价值体系:组织应围绕数据流通、数据服务和数据洞察等,开展数据资产运营和应用的治理。
数据治理过程
- 统筹和规划:明确数据治理目标和任务,营造必要的治理环境,做好数据治理实施的准备。
- 构建和运行:构建数据治理实施的机制和路径,确保数据治理实施的有序运行。
- 监控和评价:监控数据治理的过程,评价数据治理的绩效、风险与合规,保障数据治理目标的实现。
- 改进和优化:改进数据治理方案,优化数据治理实施策略、方法和流程,确保数据治理体系的完善。