Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]
输入一个整数n,输出n个左括号和右括号合法配对的情况。
与17题一样,都是考察back-track回溯算法的理解与掌握。
回溯法我是这样理解的:当前情况下,有若干种选择,选择其中一种并避开限制后进入下一步;深入了若干步后判断是否是正确解,然后做响应处理。在回溯到前一步之后,对前一步的若干种选择进行下一种选择;
本题的选择只有两种,加 ‘(’ 还是加’)’,left和right分别表示控制加左括号的个数和右括号的个数,限制条件是当left>right时,也就是右括号的数量大于左括号时,一定不是正确的匹配,直接返回。
vector<string> generateParenthesis(int n) {
vector<string> ress;
string str = "";
back_track(str,n,n,ress);
return ress;
}
void back_track(string str, int left,int right,vector<string> &res)
{
if(left == 0 && right == 0)
{
res.push_back(str);
return ;
}
if(left > right)
return;
if(left > 0)
{
back_track(str + '(',left-1, right,res);
}
if(right > 0)
{
back_track(str + ')',left,right - 1,res);
}
}