浅析 K-L 变换

K-L变换是一种基于统计特性的线性变换,用于消除数据相关性并实现最佳的数据压缩。该变换通过计算样本相关矩阵的特征值和特征向量,将原始数据转换为一组独立的成分,常用于降低数据维度。离散K-L变换步骤包括计算相关系数矩阵、选取主要特征值和向量,并对样本进行变换。在示例中,两个模式类的样本被压缩成一维,通过K-L变换实现了数据的离散表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

浅析 K-L 变换

前言

K-L 转换(Karhunen-Loève Transform)是建立在统计特性基础上的一种转换,它是均方差(MSE, Mean Square Error)意义下的最佳转换,因此在资料压缩技术中占有重要的地位。

K-L 变换的本质就是一个线性变换

y=UTx\mathbf{y}=\mathbf{U}^T\mathbf{x}y=UTx

K-L 变换的目的: 对输入的向量 x,做一个正交变换,使得输出的向量得以去除数据的相关性

原理简述

x={x1,x2,⋯ ,xn}\mathbf{x} = \{x_1,x_2,\cdots,x_n\}x={x1,x2,,xn}nnn维随机向量

为了找到 K-L 变换矩阵UUU,令

y=UTx\mathbf{y}=\mathbf{U}^T\mathbf{x}y=UTx

我们希望新向量y\mathbf{y}y的各个分量是独立的,因此有

E(yiyj)=0,i≠jE(y_iy_j)=0 ,\quad i \neq jE(yiyj)=0,i=j

可以计算yyy的相关系数矩阵RyR_yRy

Ry=E(yyT)=E(UTxxTU)=E(UTRxUT)\begin{aligned}R_y=E(\mathbf{y}\mathbf{y}^T)&=E(\mathbf{U}^T\mathbf{x}\mathbf{x}^T\mathbf{U})\\ &=E(\mathbf{U}^TR_x\mathbf{U}^T)\end{aligned}Ry=E(yyT)=E(UTxxTU)=E(UTRxUT)

显然Rx=E(xxT)R_x=E(\mathbf{x}\mathbf{x}^T)Rx=E(xxT)是对称矩阵,因此它的特征向量是相互正交的,若将UUU的列向量置为RxR_xRx的特征向量,此时RyR_yRy可以转换成对角矩阵。

Ry=E(yyT)=E(UTRxUT)=ΛR_y=E(\mathbf{y}\mathbf{y}^T)=E(\mathbf{U}^TR_x\mathbf{U}^T)=\LambdaRy=E(yyT)=E(UTRxUT)=Λ

将相关函数矩阵对角化,即通过 K-L 变换消除原有向量x\mathbf{x}x的各分量间的相关性,从而有可能去掉那些带有较少信息的分量以达到降低特征维数的目的。

Ry=Λ=[λ1⋯0⋮⋱⋮0⋯λn]R_y=\Lambda=\begin{bmatrix}\lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}Ry=Λ=λ100λn

{% note info no-icon %}
K-L 变换的产生矩阵由数据的二阶统计量决定,即 K-L 坐标系的基向量为某种基于数据 xxx 的二阶统计量的产生矩阵的特征向量

K-L 变换的产生矩阵可以有多种选择:

  1. x\mathbf{x}x的相关函数矩阵: R=E(xxT)R=E(\mathbf{x}\mathbf{x}^T)R=E(xxT)
  2. x\mathbf{x}x的协方差矩阵: C=E((x−μ)(x−μ)T)C=E((\mathbf{x}-\mu)(\mathbf{x}-\mu)^T)C=E((xμ)(xμ)T)
  3. 样本总类内离散度矩阵: Sw=∑PiΣiS_w=\sum P_i\Sigma_iSw=PiΣi

{% endnote %}

离散 K-L 变换实现

x={x1,x2,⋯ ,xn}\mathbf{x} = \{x_1,x_2,\cdots,x_n\}x={x1,x2,,xn}nnn维随机向量,Ω\OmegaΩ是来自MMM个模式类的样本集,总样本数为 NNN

利用 K-L 变换将x\mathbf{x}x变成ddd维。

step 1. 计算样本集Ω\OmegaΩ的相关系数矩阵RRR;

R=E(xxT)≈1N∑i=1NxixiTR=E(\mathbf{x}\mathbf{x}^T) \approx \frac{1}{N}\sum_{i=1}^N\mathbf{x}_i\mathbf{x}_i^TR=E(xxT)N1i=1NxixiT

step 2. 计算RRR的特征值λi(i=1,2,⋯ ,n)\lambda_i(i=1,2,\cdots,n)λi(i=1,2,,n),选择前ddd个较大值;

step 3. 计算ddd个特征值对应的特征向量ui(i=1,2,⋯ ,n)u_i(i=1,2,\cdots,n)ui(i=1,2,,n),并归一化;

U=[u1,u2,⋯ ,ud]U = [u_1,u_2,\cdots,u_d]U=[u1,u2,,ud]

step 4. 对Ω\OmegaΩ中的每个向量进行 K-L 变换;

y=UTx\mathbf{y} = U^T\mathbf{x}y=UTx

简单示例

{% note modern %}

两个模式类的样本分别为

w1:X1=[2,2]T,X2=[2,3]T,X3=[3,3]Tw_1: \mathbf{X}_1=[2,2]^T,\quad \mathbf{X}_2=[2,3]^T,\quad \mathbf{X}_3=[3,3]^Tw1:X1=[2,2]T,X2=[2,3]T,X3=[3,3]T

w2:X4=[−2,−2]T,X5=[−2,−3]T,X6=[−3,−3]Tw_2: \mathbf{X}_4=[-2,-2]^T,\quad \mathbf{X}_5=[-2,-3]^T,\quad \mathbf{X}_6=[-3,-3]^Tw2:X4=[2,2]T,X5=[2,3]T,X6=[3,3]T

利用自相关矩阵RRR作 K-L 变换,把原样本集压缩成一维。

{% endnote %}

解: 第一步: 计算样本集的自相关矩阵RRR

R=E(XXT)=16∑i=16XiXiT=[5.76.36.37.3]R = E(\mathbf{X}\mathbf{X}^T) = \frac{1}{6}\sum_{i=1}^6 \mathbf{X}_i\mathbf{X}_i^T = \begin{bmatrix}5.7 & 6.3 \\ 6.3 & 7.3\end{bmatrix}R=E(XXT)=61i=16XiXiT=[5.76.36.37.3]

第二步: 计算RRR的特征值λ\lambdaλ,选择较大值。由∣λE−R∣=0\vert \lambda E-R\vert=0λER=0

λ1=12.85,λ2=0.15\lambda_1=12.85, \quad \lambda_2=0.15λ1=12.85,λ2=0.15

第三步: 根据Ru1=λ1u1R\mathbf{u}_1=\lambda_1\mathbf{u}_1Ru1=λ1u1计算λ1\lambda_1λ1对应的特征向量u1\mathbf{u}_1u1,并归一化

u1=12.3[1,1.14]T=[0.66,0.75]T\mathbf{u}_1=\frac{1}{\sqrt{2.3}}[1,1.14]^T=[0.66,0.75]^Tu1=2.31[1,1.14]T=[0.66,0.75]T

变换矩阵为

U=[u1]=[0.660.75]U=[\mathbf{u}_1]=\begin{bmatrix}0.66\\0.75\end{bmatrix}U=[u1]=[0.660.75]

第四步: 利用UUU对样本集中的每个样本进行 K-L 变换

X1∗=UTX1=[0.660.75][22]=2.82X_1^*=U^TX_1=\begin{bmatrix}0.66 & 0.75\end{bmatrix}\begin{bmatrix}2\\2\end{bmatrix}=2.82X1=UTX1=[0.660.75][22]=2.82

变换结果为:

w1:X1∗=2.82,X2∗=3.57,X3∗=4.23w_1: \mathbf{X}_1^*=2.82,\quad \mathbf{X}_2^*=3.57,\quad \mathbf{X}_3^*=4.23w1:X1=2.82,X2=3.57,X3=4.23

w2:X4∗=−2.82,X5∗=−3.57,X6∗=−4.23w_2: \mathbf{X}_4^*=-2.82,\quad \mathbf{X}_5^*=-3.57,\quad \mathbf{X}_6^*=-4.23w2:X4=2.82,X5=3.57,X6=4.23

### DeepSeek-R1 技术架构详解 #### 架构概述 DeepSeek-R1 是一种融合了监督学习与强化学习的混合模型体系结构,旨在提供更为强大和实用的功能[^1]。该架构的设计目标是在保持高效性能的同时实现更高的灵活性。 #### 数据收集与预训练阶段 为了优化初始状态并提高后续迭代效率,DeepSeek-R1 使用了大量的冷启动数据来调整基础版本——即 DeepSeek-V3-Base 模型参数,以此作为强化学习过程的良好开端[^2]。这些高质量的数据集对于构建稳健可靠的机器学习系统至关重要。 #### 蒸馏技术的应用 通过引入先进的蒸馏方法论,DeepSeek-R1 成功实现了从小型化到大型化的多尺度建模能力转换。具体而言,团队已经发布了多个不同大小(从7B至30B)经过精心压缩但仍保留核心功能特性的轻量化变体供公众下载使用[^3]。这种做法既促进了资源的有效分配也加速了开发周期。 #### 组合优势 结合上述要素,最终形成的 DeepSeek-R1 结构能够有效地平衡计算成本与预测精度之间的关系;同时支持广泛的任务场景需求,包括但不限于自然语言处理、图像识别以及特定行业领域内的复杂挑战解决。 ```python # Python伪代码展示部分关键组件初始化逻辑 class DeepSeekR1: def __init__(self, base_model_path="path/to/deepseek_v3_base"): self.base_model = load_pretrained(base_model_path) self.distilled_models = {} def add_distilled_version(self, size_in_billion_params, model_weights): key = f"{size_in_billion_params}B" distilled_model = create_compact_model(size_in_billion_params) distilled_model.load_state_dict(model_weights) self.distilled_models[key] = distilled_model def main(): deepseek_r1_instance = DeepSeekR1() # 假设我们有一个预先准备好的权重文件路径列表 weight_files = ["weights_7b.pth", "weights_30b.pth"] sizes = [7, 30] for i in range(len(sizes)): deepseek_r1_instance.add_distilled_version(sizes[i], torch.load(weight_files[i])) if __name__ == "__main__": main() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EmoryHuang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值