机器学习、深度学习、神经网络之间的关系

1、三者之间的关系

神经网络是深度学习的核心工具,深度学习是机器学习的一个子领域。

用下面的层次结构表示:

2、机器学习

机器学习是人工智能的一个子领域,它让计算机可以通过数据来学习规律,并根据学习结果进行预测或决策,无需明确编程规则。

3、深度学习

深度学习是机器学习的一个子集,使用多层神经网络来自动学习特征,适合大规模数据,特别是非结构化数据(如图像、语音、文本)。

代表模型:CNN、RNN、Transformer

4、神经网络

神经网络是深度学习的基本结构单元,模拟生物神经元传递方式,学习复杂的模式和关系。

由输入层、隐藏层、输出层组成。

深度学习指使用了很多层神经网络

类比:

机器学习---会做数学题的学生

深度学习---擅长解决复杂问题的学生

神经网络---学生的大脑

FNN、CNN、RNN、Transformer都是神经网络的不同结构类型,属于深度学习范畴。

网络结构

全称/中文

属于

擅长任务

特点简述

FNN

Feedforward Neural Network(前馈神经网络)

最基础神经网络结构

表格类数据、回归、分类

每一层信息从前往后传递,结构简单

CNN

Convolutional Neural Network(卷积神经网络)

图像处理常用模型

图像识别、视频分析

用“卷积核”提取局部特征,适合2D/3D数据

RNN

Recurrent Neural Network(循环神经网络)

序列建模模型

文本、语音、时间序列

有“记忆”机制,适合处理前后相关的序列

Transformer

基于注意力机制的深度网络结构

新一代序列模型

语言建模、文本生成、图像、语音

用自注意力机制建模全局依赖,可并行高效训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值