CSDN名字由来

第一次写博客,有点小激动,这次就作为尝试,解释CSDN的名字!

CSDN 全称为中国软件开发网络,也就是 China Software Developer Network!

卷积神经网络(CNN)专栏收录该内容2 篇文章订阅专栏 本文详细介绍了卷积神经网络(CNN)的基础概念和工作原理,包括输入层、卷积层、池化层、连接层和输出层的作用。通过举例和图解,阐述了CNN如何处理图像,提取特征,以及如何进行手写数字识别。此外,讨论了池化层的平移不变性和防止过拟合的重要性。摘要由CSDN通过智能技术生成文章目录前言一、什么是卷积神经网络二、输入层三、卷积层四、池化层五、连接层六、输出层七、回顾整个过程总结前言  本文总结了关于卷积神经网络(CNN)的一些基础的概念,并且对于其中的细节进行了详细的原理讲解,通过此文可以十分面的了解卷积神经网络(CNN),非常适合于作为Deep Learning的入门学习。下面就是本篇博客的部内容!一、什么是卷积神经网络  卷积神经网络(Convolutional Neural Networks, CNN)这个概念的提出可以追溯到二十世纪80~90年代,但是有那么一段时间这个概念被“雪藏”了,因为当时的硬件和软件技术比较落后,而随着各种深度学习理论相继被提出以及数值计算设备的高速发展,卷积神经网络得到了快速发展。那究竟什么是卷积神经网络呢?以手写数字识别为例,整个识别的过程如下所示:图1:手写数字识别过程  以上过程就是识别手写数字的部过程,这个项目我之前也写过相关博客并开源了代码,感兴趣的同学可查阅: 基于CNN的MINIST手写数字识别项目代码以及原理详解。话说回来,可以看到整个过程需要在如下几层进行运算:输入层:输入图像等信息卷积层:用来提取图像的底层特征池化层:防止过拟合,将数据维度减小连接层:汇总卷积层和池化层得到的图像的底层特征和信息输出层:根据连接层的信息得到概率最大的结果  可以看到其中最重要的一层就是卷积层,这也是卷积神经网络名称的由来,下面将会详细讲解这几层的相关内容。二、输入层  输入层比较简单,这一层的主要工作就是输入图像等信息,因为卷积神经网络主要处理的是图像相关的内容,但是我们人眼看到的图像和计算机处理的图像是一样的么?很明显是不一样的,对于输入图像,首先要将其转换为对应的二维矩阵,这个二位矩阵就是由图像每一个像素的像素值大小组成的,我们可以看一个例子,如下图所示的手写数字“8”的图像,计算机读取后是以像素值大小组成的二维矩阵存储的图像。
最新发布
03-12
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值