汉诺塔--递归---python代码运行步骤详解

文章介绍了汉诺塔游戏的规则,以及解决这个问题所使用的递归算法。通过3个步骤展示了n=4时的汉诺塔移动过程,并提供了一个简单的Python实现。递归的执行流程可能显得抽象,但通过示例和程序运行的框图有助于理解其工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.汉诺塔问题:
  相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置64个金盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,任何时候,在小圆盘上都不能放大圆盘,且在三根柱子之间一次只能移动一个圆盘。每次只能移动1个盘子,大盘子只能放在小盘子下面
如何进行操作?经过经验可以总结为三个步骤:
汉诺塔的三个过程(n=4):
  第一步:将n-1个盘子从A移动到B;
  第二步:将第n个盘子从A移动到C;
   第三步:将n-1个盘子从B移动到C。
在这里插入图片描述
  上述的三个过程是不是听着很好理解,但是想起却很抽象,笔者就常被他是如何递归的给迷惑住。看两个细致的步骤吧。盘子为2和3时的每一步操作。
在这里插入图片描述
  这样看着图我们很好理解,但是我们一般都是在学习到递归时遇到汉诺塔的,这就必会遇到程序。

def hanoi(n,a,b,c):
    if n>0:
        hanoi(n-1,a,c,b)
        print(f"moving from {a} to {c}")
        hanoi(n-1,b,a,c)
hanoi(3,"a","b","c")

运行结果:

moving from a to c
moving from a to b
moving from c to b
moving from a to c
moving from b to a
moving from b to c
moving from a to c

这时候看着程序我们又该想了,到底怎么递归的?这个说实话不太建议去思考,有点点绕,不过好奇心驱使下,下面写了n=3时的程序运行的框图。看之后应该会好点,觉得能过得去。
在这里插入图片描述

按照顺序看上图就是n=3时的函数程序运行流程了,这样就知道是如何运行的了,就是一个个中断进入,中断返回,n为中断的条件。

参考:
【1】https://blog.csdn.net/m0_68989458/article/details/124087487
【2】https://www.bilibili.com/video/BV1AD4y1k7pb/spm_id_from=333.337.top_right_bar_window_history.content.click&vd_source=a31935802e983f1235297b686d7b2579

<think>嗯,用户想要找汉诺塔问题的非递归Python实现方法。首先,我得回忆一下汉诺塔问题的基本情况。汉诺塔是经典的递归问题,通常用递归方法解决,但用户需要非递归的实现。这可能是因为递归在处理大数时会有栈溢出的风险,或者用户想了解不同的实现方式。 首先,我得确定汉诺塔的非递归算法是如何工作的。记得非递归方法通常使用栈来模拟递归过程。递归解法中的每一步移动都可以分解为更小的子问题,非递归则需要显式地管理这些步骤的状态。 接下来,我需要查阅相关的算法知识。汉诺塔的非递归实现可以通过迭代和堆栈来管理移动步骤。每个步骤可以看作是一个状态,包含要移动的盘子数量、起始柱、辅助柱和目标柱。在递归中,这些状态由函数调用栈处理,而非递归则需要手动维护一个堆栈结构。 然后,考虑如何将这些步骤转化为Python代码。可能需要定义一个栈来保存待处理的任务,每个任务包括n(盘子数)、source、auxiliary、target。初始时,将主问题(n, a, b, c)压入栈。然后循环处理栈中的任务,分解为更小的子任务,直到所有盘子移动完成。 需要注意处理顺序,递归解法中通常是先移动n-1个盘子从源到辅助,然后移动第n个盘子到目标,最后再移动n-1个盘子从辅助到目标。非递归实现中需要确保分解任务的顺序正确,可能需要逆序压入栈来模拟递归的执行顺序。 另外,还要考虑边界条件,当n=1时直接移动盘子。同时,确保每次移动都符合汉诺塔的规则,即小盘不能在大盘下面。 现在,参考用户提供的引用内容,特别是引用[4]提到非递归实现借助堆栈。这与我之前的思路一致,所以可以结合这个引用来构建代码示例。 然后,编写代码时,需要定义一个栈,例如使用列表的append和pop方法。每个栈元素可能是一个元组,包含n、source、target、auxiliary。处理时,分解任务,先将较大的子任务压入栈,确保处理顺序正确。 最后,测试代码是否正确,例如n=3时是否能正确输出所有移动步骤。并且确保代码符合Python语法,没有错误。 总结步骤:初始化栈,压入初始任务,循环处理栈中的任务,分解为更小的子任务或直接移动盘子。每一步分解时注意顺序,确保与递归等效。输出每一步的移动指令。</think>### 汉诺塔递归Python实现详解 汉诺塔的非递归算法通过堆栈模拟递归过程,显式管理移动步骤。以下是具体实现方法: #### 核心思路 1. **堆栈模拟递归**:用栈存储待处理的子任务(包含盘子数量、源柱、目标柱、辅助柱) 2. **任务分解规则**: - 当处理任务$n>1$时,按逆序压入三个子任务(对应递归的执行顺序) - 当$n=1$时直接执行移动操作 #### Python代码实现 ```python def hanoi_nonrecursive(n, a, b, c): stack = [] # 初始任务:移动n个盘子从a到c,借助b stack.append((n, a, c, b)) while stack: current = stack.pop() num, source, target, auxiliary = current if num == 1: print(f"移动盘子从 {source} 到 {target}") else: # 注意压栈顺序与执行顺序相反 # 步骤3:移动n-1个盘子从辅助柱到目标柱 stack.append((num-1, auxiliary, target, source)) # 步骤2:移动第n个盘子到目标柱 stack.append((1, source, target, auxiliary)) # 步骤1:移动n-1个盘子从源柱到辅助柱 stack.append((num-1, source, auxiliary, target)) # 示例:3个盘子从A到C,借助B hanoi_nonrecursive(3, 'A', 'B', 'C') ``` #### 代码解析 1. **堆栈初始化**:存储元组`(盘子数, 源柱, 目标柱, 辅助柱)` 2. **循环处理**: - 弹出栈顶任务 - 当处理多盘子任务时,分解为三个子任务压栈(顺序与递归执行相反) - 单盘子任务直接执行移动 #### 执行结果 ``` 移动盘子从 A 到 C 移动盘子从 A 到 B 移动盘子从 C 到 B 移动盘子从 A 到 C 移动盘子从 B 到 A 移动盘子从 B 到 C 移动盘子从 A 到 C ``` 此算法时间复杂度仍为$O(2^n)$,但避免了递归的栈溢出风险。通过显式堆栈管理,可以处理较大规模的汉诺塔问题[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值