掌握动态规划求解问题的思想;针对不同的问题,会利用动态规划进行设计求解以及时间复杂度分析,并利用JAVA/C/C++等编程语言将算法转换为对应的程序上机运行(语言自选)。
理解两组序列的最长公共子序列问题,能够根据动态规划思想,进行最优子结构性质分析、子结构递归关系构建、编码实现子结构最优值求解以及最优解构造。
实验要求:
①掌握动态规划求解问题的策略及思路;
①基于动态规划算法设计求解序列的最长公共子序列;
③对上述算法进行时间复杂性分析,并输出程序运行时间及运行结果。
理解:
求解过程是多阶段决策的时候,每一步处理一个子问题,可用于求解最后的组合优化问题。我们能够保存已解决的子问题的答案,在需要时再找出已求得的答案,这样就可以避免大量的重复计算。我们用一个表来记录所有已解的子问题的答案。而且用动态规划方法必须满足优化原则,就是说最优解的任何一个子问题的解的状态是最优的解,也必须不是相互独立的。下面以求最短路径问题为例子。
例子:X={A,B,C,B,A,D,B},Y={B,C,B,A,A,C},那么,二者的最长公共子序列是{B,C,B,A},长度为4。
先明白最长公共子序列和最长公共子串,找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的。而最长公共子序列则并不要求连续。利用动态规划解决最长公共子序列问题的理解,界定子问题,子问题的依赖LCS,以及求LCS长度,最后构造最优解,如图所示。
四、实验步骤
完整代码实现;包括代码详细解释及功能设计说明。要求:格式清晰、卷面规范整洁。
package week5;
//最长公共子序列
public class zd {
public static int lcscd(char[] x,char[] y,int[][] b){
int m = x.length; // x数组的长度
int n = y.length;
// 首先要初始化第一行和第一列为0
int[][] c = new int[m+1][n+1];
// 第一行第一列初始化为0
for (int