动态规划—最长公共子序列

掌握动态规划求解问题的思想;针对不同的问题,会利用动态规划进行设计求解以及时间复杂度分析,并利用JAVA/C/C++等编程语言将算法转换为对应的程序上机运行(语言自选)。

理解两组序列的最长公共子序列问题,能够根据动态规划思想,进行最优子结构性质分析、子结构递归关系构建、编码实现子结构最优值求解以及最优解构造。

实验要求:

①掌握动态规划求解问题的策略及思路;

①基于动态规划算法设计求解序列的最长公共子序列;

③对上述算法进行时间复杂性分析,并输出程序运行时间及运行结果。

理解:

求解过程是多阶段决策的时候,每一步处理一个子问题,可用于求解最后的组合优化问题。我们能够保存已解决的子问题的答案,在需要时再找出已求得的答案,这样就可以避免大量的重复计算。我们用一个表来记录所有已解的子问题的答案。而且用动态规划方法必须满足优化原则,就是说最优解的任何一个子问题的解的状态是最优的解,也必须不是相互独立的。下面以求最短路径问题为例子。

例子:X={A,B,C,B,A,D,B},Y={B,C,B,A,A,C},那么,二者的最长公共子序列是{B,C,B,A},长度为4。

先明白最长公共子序列和最长公共子串,找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的。而最长公共子序列则并不要求连续。利用动态规划解决最长公共子序列问题的理解,界定子问题,子问题的依赖LCS,以及求LCS长度,最后构造最优解,如图所示。

 

四、实验步骤

完整代码实现;包括代码详细解释及功能设计说明。要求:格式清晰、卷面规范整洁。

package week5;
//最长公共子序列
public class zd {
   
public static int lcscd(char[] x,char[] y,int[][] b){
       
int m = x.length;        // x数组的长度
       
int n = y.length;
// 首先要初始化第一行和第一列为0
       
int[][] c = new int[m+1][n+1];
//        第一行第一列初始化为0
       
for (int

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值