Flask异步操作实例

之前遇到过一个问题就是执行某个操作,也要对数据库进行读写,且数量较大,时间比较久,用户点击一个按钮,会卡很久才跳出完成或刷新页面,这显然不符合用户体验,可以说是体验很差,后来去了解了一些线程、好像一旦访问数据库就会报app不存在或未定义等错误。后来找到一个方法,但是一开始也不太懂的新建app,然后用原生态的sql命令对数据库进行增删改查,这虽然解决了页面卡顿问题,但是后台的增删改查操作却显得比较繁琐,很明显这也不太符合做开发。后来上网查阅资料,发现可以自己在该异步函数中新建一个app,即可访问数据库,但好像有个不好的地方,是只能用db.session的方法来查询数据库,也不太清楚会不会出现什么问题,相对于原生的sql语句,这也大大提高了数据库的访问效率。

后端代码如下:
from concurrent.futures import ThreadPoolExecutor
@app.route('/upload_file', methods=['POST'])
def main():
    executor = ThreadPoolExecutor(1) ### 参数表示最大的线程数
    executor.submit(test, args)#其中test为异步函数,args为异步函数的参数
    return 'ok'

当执行上面的函数时,会很快返回ok,test函数会在后台继续执行。如果test函数去访问数据库进行增删改查,用原生sql应该问题不大,只不过比较麻烦,所以最好是用orm框架来处理数据,而直接用db.seesion的方式处理数据库会报app未定义,解决该问题代码如下:

def test(args):
    '''
    异步执行函数
    '''
    from config import config
    from flask import Flask
    from flask_sqlalchemy import SQLAlchemy
    app = Flask("report")
    app.config.from_object(config['test'])
    db = SQLAlchemy(app)
    ...#这里即可对数据库进行增删改查操作

原理是重新新建一个app,并连接我们的数据,配置文件为test,配置文件如下:

class TestConfig(Config):
    """
    设置多数据库访问,默认访问SQLALCHEMY_DATABASE_URI的数据库
    在建数据表模型的时候指定__bind_key__ = 'test'时,则表会被建到report的数据库中
    """
    DEBUG = True
    # SQLALCHEMY_ECHO = True
    # SQLALCHEMY_COMMIT_ON_TEARDOWN = True
    CELERY_BROKER_URL = 'redis://localhost:6379/0'
    CELERY_BACKEND_URL = 'redis://localhost:6379/0'
    SQLALCHEMY_DATABASE_URI = "mysql+pymysql://root:123456@localhost:3306/database"
    SQLALCHEMY_BINDS = {
    'test':'mysql+pymysql://root:123456@localhost:3306/database',
    }
config = {'test':TestConfig}
### 如何在 Flask 中实现异步任务或使用异步功能 #### 使用 `asyncio` 和 `aiohttp` 的方法 Flask 自身是一个同步框架,但在某些场景下可以通过引入 Python 的标准库模块 `asyncio` 来支持异步操作。通过定义异步视图函数并结合 `await` 关键字可以完成简单的异步任务。例如,在处理长时间运行的任务时,可以利用 `asyncio.sleep()` 或其他协程来模拟延迟。 以下是基于 `asyncio` 的简单示例代码: ```python from flask import Flask import asyncio app = Flask(__name__) @app.route("/async") async def async_route(): await asyncio.sleep(2) # 模拟耗时操作 return "Async operation completed" if __name__ == "__main__": app.run() ``` 这种方法适用于轻量级的异步需求[^1]。 --- #### 结合 Celery 处理复杂的后台任务 对于更复杂、耗时较长的操作(如批量数据处理),推荐使用 Celery 进行分布式任务队列管理。Celery 是一个强大的工具,能够与 Flask 配合工作以实现异步任务调度。它允许开发者将耗时任务从主线程分离出来,并将其放入独立的工作进程中执行。 下面是一段基本配置和使用的例子: ##### 安装依赖 ```bash pip install celery redis ``` ##### 创建 Celery 应用实例并与 Redis 绑定作为消息代理 ```python from flask import Flask from celery import Celery def make_celery(app): celery_app = Celery( app.import_name, backend="redis://localhost:6379/0", broker="redis://localhost:6379/0" ) celery_app.conf.update(app.config) class ContextTask(celery_app.Task): def __call__(self, *args, **kwargs): with app.app_context(): return self.run(*args, **kwargs) celery_app.Task = ContextTask return celery_app app = Flask(__name__) celery = make_celery(app) @celery.task def long_running_task(task_id): """模拟一个耗时任务""" import time time.sleep(10) print(f"Task {task_id} finished") @app.route("/trigger/<int:task_id>") def trigger_task(task_id): long_running_task.delay(task_id) return f"Triggered task {task_id}" ``` 此方案适合于需要高可靠性和扩展性的项目环境[^2]。 --- #### 利用线程池简化小型异步任务 当不想引入额外的外部组件时,也可以考虑直接采用内置的标准库 `concurrent.futures.ThreadPoolExecutor` 来创建线程池,从而快速启动子线程去执行非阻塞型任务。这种方式虽然不如前两者优雅高效,但对于一些仅需短时间并发的小规模应用场景来说已经足够满足需求了。 这里给出一段示范程序片段: ```python from flask import Flask from concurrent.futures import ThreadPoolExecutor import time executor = ThreadPoolExecutor(max_workers=5) app = Flask(__name__) @app.route('/sync') def sync_data(): executor.submit(background_job) return 'Job submitted' def background_job(): time.sleep(5) print("Background job done!") if __name__ == '__main__': app.run(debug=True) ``` 该方式特别适配那些不希望增加太多学习成本或者资源消耗较小的情况下的解决方案[^3]。 --- ### 总结 综上所述,针对不同类型的业务逻辑可以选择不同的技术栈来进行优化改进。如果是较为基础的功能建议优先尝试原生支持的方式;而对于更加专业化的领域则应倾向于选用专门设计用于解决此类问题的技术产品组合起来共同发挥作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值