自动驾驶等级分类

SAE

SAE(Society of Automotive Engineers)将汽车自动驾驶分为六个等级,等级从L0到L5,具体内容如下表所示

在这里插入图片描述
在 SAE 的自动驾驶分级中,驾驶辅助(L1 级)与部分自动驾驶(L2 级)均由驾驶人完成监控驾驶环境的任务,但对于自动驾驶系统参与控制车辆程度的问题上两个等级存在明显差异,驾驶辅助(L1 级)负责车辆的纵向控制或者横向控制中的一种,其余的控制任务均由驾驶人负责,而部分自动驾驶(L2 级)的自动驾驶系统需要同时对车辆进行纵向控制和横向控制。

有条件自动驾驶(L3 级)、高度自动驾驶(L4 级)与完全自动驾驶(L5 级)主要的区别在于驾驶人对驾驶环境的监控任务逐渐减少,其中有条件自动驾驶(L3级)只有当系统请求驾驶人接管时,驾驶人才会根据条件给予适当的支持;高度自动驾驶(L4 级)与有条件自动驾驶(L3 级)有所不同,在部分使用场景中,当系统请求驾驶人接管时,驾驶人可以不提供任何支持,而自动驾驶系统仍然可以完成各种动态驾驶任务;完全自动驾驶(L5 级)则完全不需要驾驶人进行对驾驶环境的监控,自动驾驶系统可以在全路况全方面地代替了驾驶人执行各种驾驶任务。

未完待续

L3级自动驾驶在功能安全领域中,ASIL(Automotive Safety Integrity Level,汽车安全完整性等级)是ISO 26262标准中用于评估和划分汽车电子电气系统功能安全风险的重要指标。ASIL等级从A到D共分为四个级别,其中A表示风险最低,D表示风险最高。ASIL等级的划分主要依据以下几个因素:暴露概率(Exposure)、可控性(Controllability)以及严重性(Severity),即所谓的ECS(Exposure x Controllability x Severity)模型。 对于L3级自动驾驶系统而言,其核心功能是在特定条件下实现车辆的完全自动驾驶,例如高速公路的自动驾驶或交通拥堵时的自动驾驶。由于L3级系统要求驾驶员在某些情况下仍需介入驾驶任务,因此系统的功能安全设计必须确保在系统请求驾驶员接管时,驾驶员能够及时、安全地接管车辆控制权。这种复杂的系统交互特性使得L3级自动驾驶系统在多个子系统中面临较高的ASIL等级要求,尤其是在感知、决策和执行模块。 例如,在感知系统中,摄像头、雷达、激光雷达等传感器的功能失效可能导致系统对环境的误判,进而引发严重的交通事故。因此,这些关键传感器模块通常需要达到ASIL D等级的要求。在决策系统中,自动驾驶控制器的软件逻辑和硬件平台必须满足高可靠性要求,以确保在各种复杂交通场景下做出正确的决策。同样,执行机构如转向系统、制动系统和动力系统也需满足高ASIL等级要求,以确保即使在系统发生故障时也能维持基本的安全状态。 为了满足高ASIL等级的要求,L3级自动驾驶系统通常采用冗余设计策略,包括硬件冗余、软件冗余和通信通道冗余等手段。例如,双控制器架构可以实现互为备份的功能,确保在主控制器失效时备用控制器能够无缝接管控制权。此外,系统还需通过严格的验证和确认流程,包括仿真测试、封闭场地测试和开放道路测试等环节,以确保其在各种驾驶场景下的安全性。 综上所述,L3级自动驾驶系统在功能安全方面面临较高的ASIL等级要求,尤其在感知、决策和执行模块。为了满足这些要求,系统设计中广泛采用冗余架构和严格的验证流程,以确保在复杂交通环境中的安全性[^1]。 ### 示例代码:ASIL等级评估模型简化实现 以下是一个简化的ASIL等级评估模型的Python实现示例,用于演示如何根据暴露概率、可控性和严重性来评估ASIL等级: ```python def assess_asil_level(exposure, controllability, severity): # Exposure: E0, E1, E2, E3, E4 (0 to 4) # Controllability: C0, C1, C2, C3 (0 to 3) # Severity: S0, S1, S2, S3 (0 to 3) # Mapping strings to numerical values exposure_map = {'E0': 0, 'E1': 1, 'E2': 2, 'E3': 3, 'E4': 4} controllability_map = {'C0': 0, 'C1': 1, 'C2': 2, 'C3': 3} severity_map = {'S0': 0, 'S1': 1, 'S2': 2, 'S3': 3} e = exposure_map[exposure] c = controllability_map[controllability] s = severity_map[severity] # ASIL matrix lookup (simplified) asil_matrix = [ # C0 C1 C2 C3 ['A', 'A', 'B', 'C'], # S0 ['A', 'B', 'C', 'D'], # S1 ['B', 'C', 'D', 'D'], # S2 ['C', 'D', 'D', 'D'], # S3 ] return asil_matrix[s][c] # Example usage asil_level = assess_asil_level('E4', 'C3', 'S3') print(f"The ASIL level is: {asil_level}") ``` 该代码示例展示了如何根据ECS模型评估ASIL等级的基本逻辑,实际应用中需要考虑更多细节和边界条件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值