计算机视觉领域中,目标检测是一项重要任务,它能够识别图像或视频中的特定对象并提供其位置和边界框信息。为了提高检测器的准确度,我们可以构建一个高效的金字塔网络架构。在本文中,我们将介绍金字塔网络的原理,并提供相应的源代码示例。
金字塔网络是一种多尺度的图像处理方法,它通过在不同尺度上对输入图像进行处理来捕捉目标的多尺度表示。金字塔网络通常由多个层级组成,每个层级都有不同的分辨率。下面是一个用于目标检测的简化金字塔网络架构示例:
import tensorflow as tf
def build_pyramid_network(input_image):
# 第一层:原始图像
layer1 = tf.keras.layers