2025年ASOC SCI2区TOP,自适应维度多种群差分进化算AOD-MPDE+水下滑翔机运动规划,深度解析+性能实测


1.摘要

水下滑翔机运动规划问题由于对优化维度的高度敏感,带来了显著的优化挑战。因此,本文提出了一种自适应优化维多种群差分进化算法(AOD-MPDE),该算法包含三个异质子种群,每个子种群具有不同的优化维度,并采用混合初始化方法生成高质量的初始解。通过异质信息交互机制,子种群之间相互作用,优化变异策略并促进最佳个体信息的共享。为了优化维度的选择,提出了协同进化策略,结合了维度增减操作,使得算法能够自适应调整优化维度到最优值。

2.水下滑翔机运动规划

问题描述及现有挑战

水下滑翔机运动规划(UGMP)是一种离线规划方法,主要为水下滑翔机(UG)的岸基或船载指挥控制系统提供支持。UGMP方法通过规划滑翔机的偏航角、下潜深度和俯仰角来生成最优路径,允许滑翔机根据海洋环境变化持续调整运动参数,从而提高运动性能。然而,在远程导航任务中,滑翔机需要规划多个滑行轮廓,涉及大量运动参数优化,通常超过100个决策变量,形成高维优化问题。此外,海洋洋流、海底地形及滑翔任务的复杂性使得确定最优滑行轮廓数量变得困难,因此UGMP问题具有高维性和最优维度不确定性。

UGMP方法

决策变量及其编码方法

UGMP方法中使用的决策变量,包括偏航角、偏航角增量、俯仰角增量、下潜深度和俯仰角。当水下滑翔机(UG)处于起始点时,可以在范围 φ 1 ∈ [ 0 ∘ , 36 0 ∘ ] \varphi_{1}\in[0^{\circ},360^{\circ}] φ1[0,360]内自由调整偏航角。然而,在后续的航行中,滑翔机调整偏航角的能力受运动学约束的限制。
R φ ( θ ) = ω ⋅ D φ V cos ⁡ θ R_{\varphi}\left(\theta\right)=\omega\cdot\frac{D_{\varphi}}{V\cos\theta} Rφ(θ)=ωVcosθDφ

其中, R ϕ ( θ ) R_\phi(\theta) Rϕ(θ)是偏航角增量的最大调整范围, ω = 0.0039 \omega=0.0039 ω=0.0039 rad/s 是水下滑翔机的角速
度, D ϕ = 50 D_\phi=50 Dϕ=50 m。第 i i i个滑翔轮廓的偏航角 ϕ i \phi_i ϕi
φ i = { φ 1 i = 1 φ i − 1 + Δ φ i 2 ≤ i ≤ n \varphi_i= \begin{cases} \varphi_1 & \quad i=1 \\ \varphi_{i-1}+\Delta\varphi_i & \quad2\leq i\leq n & \end{cases} φi={φ1φi1+Δφii=12in

决策变量的编码方法

适应度函数

单个滑翔轮廓能量消耗

在单个滑翔轮廓中,UG的能量消耗主要包括三个部分:控制系统、浮力调节系统和姿态调节系统。控制系统的能量消耗主要依赖于滑翔距离:
E c o n = p t ⋅ 2 d tan ⁡ θ ⋅ V h c E_{con}=p_t\cdot\frac{2d}{\tan\theta\cdot V_{hc}} Econ=pttanθVhc2d

其中, p t p_t pt是与滑翔距离相关的功率, d d d θ \theta θ分别表示下潜深度和俯仰角, V h c V_{hc} Vhc是考虑海洋洋流的有效滑翔速度:
V h c = ( V h cos ⁡ ϕ 1 + V c cos ⁡ ϕ ) 2 + ( V h sin ⁡ ϕ 1 + V c sin ⁡ ϕ ) 2 V_{hc}=\sqrt{(V_h\cos\phi_1+V_c\cos\phi)^2+(V_h\sin\phi_1+V_c\sin\phi)^2} Vhc=(Vhcosϕ1+Vccosϕ)2+(Vhsinϕ1+Vcsinϕ)2
其中, V c V_{c} Vc ϕ \phi ϕ 分别表示海洋洋流的大小和方向, V h V_{h} Vh 是UG在静水中的滑行速度:
V h = 2 K d F b cos ⁡ 4 θ 2 K d K l 0 cos ⁡ θ + K l sin ⁡ θ + ( − K l + K l 2 − 4 K d K 0 cot ⁡ θ ( K d K 0 cos ⁡ θ + K l ) ) V_h=\sqrt{\frac{2K_dF_b\cos^4\theta}{2K_dK_{l0}\cos\theta+K_l\sin\theta+(-K_l+\sqrt{K_l^2-4K_dK_0\cot\theta(K_dK_0\cos\theta+K_l)})}} Vh=2KdKl0cosθ+Klsinθ+(Kl+Kl24KdK0cotθ(KdK0cosθ+Kl) )2KdFbcos4θ

浮力控制系统的能量消耗主要取决于下潜深度:
E b u o y = 2 F b ( P v q v + P p 0 q p + k q p ) E_{buoy}=2F_b\left(\frac{P_v}{q_v}+\frac{P_{p0}}{q_p}+\frac{k}{q_p}\right) Ebuoy=2Fb(qvPv+qpPp0+qpk)

其中, ρ \rho ρ是海水密度, g g g是重力加速度, P v P_v Pv q v q_v qv分别表示电磁阀功率和液压流量, P p 0 P_{p0} Pp0是液压泵功率, k k k是液压泵功率与下潜深度之间的关系系数。

姿态控制系统的能量消耗主要取决于俯仰角:
E a t t = 4 P m M h v m ⋅ m ⋅ tan ⁡ θ E_{att}=\frac{4P_mM_h}{v_m\cdot m}\cdot\tan\theta Eatt=vmm4PmMhtanθ

其中, M M M m m m分别表示水下滑翔机及内部滑翔机的质量, P m P_m Pm v m v_m vm分别表示电机功率
和滑翔机速度, h h h是稳定中心的高度。
单个滑翔轮廓的总能量消耗为:
e = e c o n + e b u o y + e a t t e=e_{con}+e_{buoy}+e_{att} e=econ+ebuoy+eatt
为了确保水下滑翔机在任务过程中的安全,如果水下滑翔机遇到可能导致碰撞的海底地形,第 i i i 个滑翔轮廓的能量消耗将被设置为无穷大:
E = I N F E=INF E=INF

3.自适应维度多种群差分进化算AOD-MPDE

AOD-MPDE算法首先构建了三个异质子种群(Sub1、Sub2、Sub3),每个子种群具有不同的优化维度和种群规模。初始子种群通过混合种群初始化方法生成高质量的初始解。这些子种群在不同维度空间中共同进化,利用全局最优个体的信息。变异操作中最优子种群采用current-to-𝑝best/1变异策略,非最优子种群则根据全局最优个体引导变异。当满足特定条件时,子种群间的最优个体将进行交互。算法执行优化维度的协同进化策略,Sub1和Sub2进行维度增减操作,而Sub3仅进行维度减少操作,通过根据适应度值和优化维度制定的条件,算法确定最佳优化维度,并通过线性种群规模缩减技术减少种群规模。

AOD-MPDE框架流程图

异质子种群生成方法

最小和最大滑翔剖面数

在实践中,直接通过经验确定最佳优化维度的可能范围是具有挑战性的。论文采用了一种改进的UG路径规划(I-UGPP)方法,当UG以最小俯仰角和最大下潜深度滑行时,为了到达目标点,所需的滑翔轮廓数最小。最小滑翔轮廓数定义为:
N min ⁡ = ∑ i = 1 s ⌊ L i ⋅ tan ⁡ θ min ⁡ 2 ⋅ d max ⁡ ⌋ N_{\min}=\sum_{i=1}^s\left\lfloor\frac{L_i\cdot\tan\theta_{\min}}{2\cdot d_{\max}}\right\rfloor Nmin=i=1s2dmaxLitanθmin

UG的下潜深度受到最小俯仰角和海底地形深度的限制。为了避免过大的计算负担,进一步限制最大滑翔轮廓数至最小值的若干倍:
N max ⁡ = min ⁡ { ∑ i = 1 s ⌊ L i ⋅ tan ⁡ θ max ⁡ 2 ⋅ min ⁡ ( T D i , d max ⁡ ) ⌋ , 4 ⋅ N min ⁡ } N_{\max}=\min\left\{\sum_{i=1}^s\left\lfloor\frac{L_i\cdot\tan\theta_{\max}}{2\cdot\min(T_{D_i},d_{\max})}\right\rfloor,4\cdot N_{\min}\right\} Nmax=min{i=1s2min(TDi,dmax)Litanθmax,4Nmin}

由于每个滑翔轮廓由三个运动参数决定,因此优化维度的范围定义为 D min ⁡ = 3 ⋅ N min ⁡ D_{\min}=3\cdot N_{\min} Dmin=3Nmin
D max ⁡ = 3 ⋅ N max ⁡ D_{\max}=3\cdot N_{\max} Dmax=3Nmax。中间优化维度为:
D m i d = 3 ⋅ ⌊ N m i n + N m a x 2 ⌋ D_\mathrm{mid}=3\cdot\left\lfloor\frac{N_\mathrm{min}+N_\mathrm{max}}{2}\right\rfloor Dmid=32Nmin+Nmax

混合种群初始化

为了提高收敛速度,本文提出了一种混合种群初始化方法,该方法结合了随机生成初始化、目标点引导初始化和路径点引导初始化三种策略。每个子种群根据特定比例采用这些策略。随机生成初始化:决策变量通过随机生成,提供了广泛的探索范围,但通常导致较慢的收敛速度,且不能确保UG朝目标点滑行;目标点引导初始化:通过引导UG的偏航角朝目标点,并随机生成下潜深度和俯仰角,提升初始解的可行性;路径点引导初始化:当目标点引导无法有效引导UG时,路径点引导初始化通过在起始点和目标点之间添加中间路径点来提高引导精度。

异质子种群信息交互机制

AOD-MPDE将具有全局最佳个体的子种群定义为最优子种群,采用current-to-pbest/1变异策略。为了充分利用全局最佳个体的信息,非最优子种群的变异操作:
v i , g = x i , g + F i ⋅ ( x p b e s t , g − x i , g ) + F i ⋅ ( x r 1 , g − x r 2 , g ) + δ ⋅ ( x ^ g b e s t , g − x i , g ) v_{i,g}=x_{i,g}+F_i\cdot(x_{\mathrm{pbest},g}-x_{i,g})+F_i\cdot(x_{r1,g}-x_{r2,g})+\delta\cdot(\hat{x}_{\mathrm{gbest},g}-x_{i,g}) vi,g=xi,g+Fi(xpbest,gxi,g)+Fi(xr1,gxr2,g)+δ(x^gbest,gxi,g)

其中, δ \delta δ表示影响权重,是一个预定义常数。通过引入 δ \delta δ,变异策略能够融入全局最佳个体的信息。较大的 δ \delta δ值表示全局最佳个体对新个体生成的影响更强。 x ^ g b e s t , g \hat{x}_{\mathrm{gbest},g} x^gbest,g是全局最佳个体的变体,它是根据子种群的优化维度确定:
x ^ g b e s t , g = { x g b e s t , g ( 1 : D n o ) D n o ≤ D 0 x g b e s t , g × x n o b e s t , g ( D 0 + 1 : D n o ) D n o > D 0 \hat{x}_{\mathrm{gbest},g}= \begin{cases} x_{\mathrm{gbest},g}(1:D_{\mathrm{no}}) & D_{\mathrm{no}}\leq D_0 \\ x_{\mathrm{gbest},g}\times x_{\mathrm{nobest},g}(D_0+1:D_{\mathrm{no}}) & D_{\mathrm{no}}>D_0 & \end{cases} x^gbest,g={xgbest,g(1:Dno)xgbest,g×xnobest,g(D0+1:Dno)DnoD0Dno>D0

其中, D n o D_{\mathrm{no}} Dno表示非最优子种群的优化维度, D 0 D_0 D0表示最优子种群的优化维度。 x g b e s t , g ( 1 : x_{\mathrm{gbest},g}(1: xgbest,g(1: D n o ) D_{\mathrm{no}}) Dno)表示从 x g b e s t , g x_\mathrm{gbest,g} xgbest,g中选择前 D n o D_\mathrm{no} Dno个决策变量, x n o b e s t , g x_\mathrm{nobest,g} xnobest,g表示非最优子种群中的最佳个体。

最优个体间的交互确保了全局最佳个体的有益信息在子种群之间共享,从而促进收敛到更好的解。交互条件:
( m o d ( g , N f ) = 0 ) ( ∼ ( D S u b 1 = D S u b 2 = D S u b 3 ) = t r u e ) \begin{pmatrix} mod & (g,N_f)=0 \end{pmatrix}\quad\left(\sim\left(D_{Sub_1}=D_{Sub_2}=D_{Sub_3}\right)=true\right) (mod(g,Nf)=0)((DSub1=DSub2=DSub3)=true)

最优个体之间互动

优化维度协同进化策略

优化维度协同进化策略促进了异质子种群优化维度向相同最优值的收敛。为了确保在不同维度空间中进行全面的探索和进化,条件:
m o d ( g , N o d c s ) = 0 \mathrm{mod}(g,N_{\mathrm{odcs}})=0 mod(g,Nodcs)=0
其中,
N o d c s = ⌈ 1 k o d c s ⋅ G m a x D S u b 3 − D S u b 1 + 1 0 − 6 ⌉ N_{\mathrm{odcs}}=\left\lceil\frac{1}{k_{\mathrm{odcs}}}\cdot\frac{G_{\mathrm{max}}}{D_{\mathrm{Sub3}}-D_{\mathrm{Sub1}}+10^{-6}}\right\rceil Nodcs=kodcs1DSub3DSub1+106Gmax

其中, k o d c s k_\mathrm{odcs} kodcs是调整 N o d c s N_\mathrm{odcs} Nodcs大小的系数, G m a x G_\mathrm{max} Gmax是最大代数, D S u b 3 D_\mathrm{Sub3} DSub3 D S u b l D_{\mathrm{Subl}} DSubl分别是Sub3和Sub1的优化维度。随着Sub3和Sub1的维度差距减少, N o d c s N_\mathrm{odcs} Nodcs的值会增加。因此,在初期优化阶段执行优化维度协同进化策略的频率较高,而在后续优化阶段则较低。

4.结果展示

论文仿真

5.参考文献

[1] Hu H, Wang T, Zhou Y, et al. A multi-population differential evolution algorithm with adaptive optimization dimensions for underwater glider motion planning[J]. Applied Soft Computing, 2025: 113366.

6.代码获取

xx

7.算法辅导·应用定制·读者交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值