1.摘要
在本研究中,针对多重约束下的冷链物流配送路径优化问题,综合考虑了制冷参数、货物损耗率和碳排放等关键因素,系统分析并量化了载重能力与环境温度对总运营成本的影响。为提升模型的现实适用性,引入了交通状况监测机制,实现对道路状态的动态评估,并获得了更为准确的运输时间。基于上述参数,构建了交通响应型冷链物流配送路径优化模型。
针对该模型的复杂多峰特性,本文提出了聚类鲸鱼优化算法(CWOA),其采用DBSCAN聚类实现种群动态重组,创新设计了基于搜索代理地址的路径编码规则,并引入正弦-余弦振荡算子以增强个体搜索的灵活性。
2.鲸鱼优化算法WOA原理
SCI二区|鲸鱼优化算法(WOA)原理及实现【附完整Matlab代码】
3.冷链物流模型
路径优化方法描述
冷链物流广泛应用于对低温有严格要求的食品、药品等高时效性产品,但传统优化模型往往忽视了车辆载重、交通状况和温度变化等对成本和碳排放的影响,导致实际应用偏差。因此,本文在模型中综合考虑了制冷、货损、碳排放、载重、交通与温度等多重因素,力求更贴合实际场景,并以总成本最小化为优化目标,建立冷链低碳物流配送路径模型。
模型建立过程中,假设所有配送需求点的需求量、地理位置及时间窗等信息均已知,车辆类型统一,相关成本参数可获取。优化流程包括:数据收集与矩阵构建、交通状况预测与拥堵函数设计、目标函数和约束的模型建立、运输时间及成本的精确计算、路径与车辆调度矩阵的创新编码,以及基于DBSCAN聚类的改进鲸鱼优化算法求解。
数学模型
车辆固定成本
配送中心在使用冷藏配送车辆为各个需求点提供服务时,会产生固定成本。这些成本主要包括驾驶员工资、车辆折旧费用以及维护费用,并且与所使用的冷链车辆数量相关,但与行驶距离无关。车辆固定成本:
C
1
=
∑
k
=
1
m
y
n
+
1
,
k
F
C1=\sum_{k=1}^my_{n+1,k}F
C1=k=1∑myn+1,kF
运输成本
运输成本通常指的是车辆运输过程中因燃料消耗产生的费用。运输过程中的燃料消耗由冷链车辆的实际负载系数及运输距离决定。需求点
i
i
i到需求点
j
j
j的运输路径上,车辆
k
k
k的实际负载系数:
U
=
p
i
j
k
/
Q
U=p_{ijk}/Q
U=pijk/Q
总燃料消耗:
C
i
j
′
=
(
1
+
b
T
i
d
l
e
)
d
i
j
[
e
1
+
p
i
j
k
(
e
2
−
e
1
)
/
Q
]
C_{ij}^{\prime}=(1+bT_{idle})d_{ij}[e_1+p_{ijk}(e_2-e_1)/Q]
Cij′=(1+bTidle)dij[e1+pijk(e2−e1)/Q]
假设单位燃油价格为
a
a
a,则总运输成本:
C
2
=
a
(
1
+
b
T
i
d
l
e
)
∑
i
=
0
n
∑
j
=
0
n
∑
k
=
1
m
d
i
j
s
i
j
k
(
e
1
+
p
i
j
k
(
e
2
−
e
1
)
/
Q
)
C2=a(1+bT_{idle})\sum_{i=0}^n\sum_{j=0}^n\sum_{k=1}^md_{ij}s_{ijk}(e_1+p_{ijk}(e_2-e_1)\left/Q\right)
C2=a(1+bTidle)i=0∑nj=0∑nk=1∑mdijsijk(e1+pijk(e2−e1)/Q)
货物损坏成本
损坏成本是指冷链产品在运输和卸货过程中,由于时间和温度波动导致产品变质而产生的费用。
C
3
=
∑
i
=
1
n
+
1
∑
j
=
1
n
+
1
∑
k
=
1
m
p
3
p
i
j
k
s
i
j
k
(
1
−
e
−
q
1
t
j
)
+
∑
i
=
1
n
+
1
∑
j
=
1
n
+
1
∑
k
=
1
m
p
3
p
i
j
k
s
i
j
k
(
1
−
e
−
q
2
T
j
)
C3=\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}\sum_{k=1}^{m}p_{3}p_{ijk}s_{ijk}(1-e^{-q_{1}t_{j}})+\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}\sum_{k=1}^{m}p_{3}p_{ijk}s_{ijk}(1-e^{-q_{2}T_{j}})
C3=i=1∑n+1j=1∑n+1k=1∑mp3pijksijk(1−e−q1tj)+i=1∑n+1j=1∑n+1k=1∑mp3pijksijk(1−e−q2Tj)
制冷成本
根据不同时刻制冷成本情况,制冷费用:
C
4
=
α
∑
k
=
1
m
y
n
+
1
,
k
p
41
T
p
r
e
+
α
∑
i
=
1
n
+
1
∑
j
=
1
n
+
1
∑
k
=
1
m
p
42
t
i
j
s
i
j
k
+
α
∑
i
=
1
n
+
1
∑
j
=
1
n
+
1
×
∑
k
=
1
m
p
43
T
j
s
i
j
k
\begin{aligned} C4 & =\alpha\sum_{k=1}^{m}y_{n+1,k}p_{41}T_{pre}+\alpha\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}\sum_{k=1}^{m}p_{42}t_{ij}s_{ijk}+\alpha\sum_{i=1}^{n+1}\sum_{j=1}^{n+1} \times\sum_{k=1}^{m}p_{43}T_{j}s_{ijk} \end{aligned}
C4=αk=1∑myn+1,kp41Tpre+αi=1∑n+1j=1∑n+1k=1∑mp42tijsijk+αi=1∑n+1j=1∑n+1×k=1∑mp43Tjsijk
碳排放成本
碳排放成本是指车辆在运输过程中因能源消耗和制冷剂消耗而产生的二氧化碳排放成本。汽车油耗受行驶距离、有效载荷、车速等因素影响,油耗越高,二氧化碳排放量越大。
C
5
=
∑
i
=
1
n
+
1
∑
j
=
1
n
+
1
∑
k
=
1
m
p
c
e
s
i
j
k
(
1
+
b
T
i
d
l
e
)
d
i
j
[
e
1
+
p
i
j
k
(
e
2
−
e
1
)
/
Q
]
+
∑
i
=
1
n
+
1
∑
j
=
1
n
+
1
×
∑
k
=
1
m
p
c
e
E
s
i
j
k
t
i
j
\begin{aligned} C_5 & =\sum_{i=1}^{n+1}\sum_{j=1}^{n+1}\sum_{k=1}^{m}p_{c}es_{ijk}(1+bT_{idle})d_{ij}[e_{1}+p_{ijk}(e_{2}-e_{1})\left/Q\right]+\sum_{i=1}^{n+1}\sum_{j=1}^{n+1} \times\sum_{k=1}^mp_ceEs_{ijk}t_{ij} \end{aligned}
C5=i=1∑n+1j=1∑n+1k=1∑mpcesijk(1+bTidle)dij[e1+pijk(e2−e1)/Q]+i=1∑n+1j=1∑n+1×k=1∑mpceEsijktij
超载惩罚成本
过载惩罚成本:
C
6
=
M
∑
k
=
1
m
max
(
p
k
−
max
−
Q
,
0
)
C6=M\sum_{k=1}^m\max(p_{k_-\max}-Q,0)
C6=Mk=1∑mmax(pk−max−Q,0)
3.基于DBSCAN聚类的改进鲸鱼优化算法
种群划分策略
DBSCAN聚类:
i
=
d
b
s
c
a
n
(
X
(
t
)
,
e
,
m
i
n
)
k
=
i
(
X
∗
(
t
)
)
\begin{array} {c}i=dbscan(X(t),e,\mathrm{~min}) \\ k=i(X^*(t)) \end{array}
i=dbscan(X(t),e, min)k=i(X∗(t))
X
(
t
)
X(t)
X(t)表示第
t
t
t次迭代时种群成员的位置矩阵,
X
∗
(
t
)
X^*(t)
X∗(t)表示第
t
t
t次迭代时适应度最优鲸鱼的位置,dbscan 是一个预定义函数,使用参数
e
e
e (邻域半径)和 min (最小邻居数)对矩阵
X
(
t
)
X(t)
X(t)进行聚类,并将每个鲸鱼个体的分类索引记录在一维数组
i
i
i中。
e
=
∑
j
=
1
J
(
u
b
(
j
)
−
l
b
(
j
)
)
2
/
30
e =\sqrt{\sum_{j=1}^{J}\left(ub(j)-lb(j)\right)^{2}}/30
e=j=1∑J(ub(j)−lb(j))2/30
在冷链物流中,动态约束通常表现为周期性变化,例如温度控制周期和高峰时段的交通波动。为模拟这些实际中的不确定性,并提升算法对复杂配送需求的适应性,本研究引入了正弦-余弦振荡机制改进种群的随机搜索过程:
X
(
t
+
1
)
=
{
X
(
t
)
+
r
3
∗
sin
r
4
∗
∣
r
5
∗
X
r
a
n
d
(
t
)
−
X
(
t
)
∣
,
p
′
<
0.5
X
(
t
)
+
r
3
∗
cos
r
4
∗
∣
r
5
∗
X
r
a
n
d
(
t
)
−
X
(
t
)
∣
,
p
′
≥
0.5
\left.X(t+1)=\left\{ \begin{array} {l}X(t)+r3*\sin r4*|r5*X_{rand}(t)-X(t)|,p^{\prime}<0.5 \\ X(t)+r3*\cos r4*|r5*X_{rand}(t)-X(t)|,p^{\prime}\geq0.5 \end{array}\right.\right.
X(t+1)={X(t)+r3∗sinr4∗∣r5∗Xrand(t)−X(t)∣,p′<0.5X(t)+r3∗cosr4∗∣r5∗Xrand(t)−X(t)∣,p′≥0.5
4.结果展示
5.参考文献
[1] Sun Z, Ma S, Jian Y, et al. Cold Chain Delivery Route Modeling and Optimizing Based on the Clustered Whale Optimization Algorithm[J]. Applied Soft Computing, 2025: 113544.
6.代码获取
xx