1.摘要
自然灾害,如洪水和火灾,每年都对世界各地的多个地区造成影响。在灾害管理和规划中,人员疏散是最为关键的环节之一。因此,本研究提出了一种应急疏散的数学模型,考虑了将人员转移至避难所的各种约束条件,包括道路封堵、车辆燃料和乘客容量等,该模型被称为最大化公交疏散规划模型。考虑到该问题具有 NP-hard 的复杂度,本文采用混合粒子群-启发式算法来求解该非线性模型,对该模型进行线性化并通过组合Benders切割法,采用三种不同版本进行求解。
2.问题陈述
在野火紧急情况下,晚疏散的人员面临严重风险,包括高温、能见度下降、障碍物以及路径标识被烧毁等,可能导致伤亡。因此,当火势逼近时,强制疏散警报会提醒人们前往疏散站。然而,有限的救援车辆和设施、道路封堵以及火灾强度的增加,都会影响疏散效率。为应对这些挑战,车辆需要在指定时间内接送人员前往中央避难所,最大化疏散效率,同时考虑道路封堵、车辆燃料和容量等因素。
数学模型
本文聚焦于一个有向图 G = ( V , A ) G=(V,A) G=(V,A),其中 V V V表示节点集合,包括疏散中心、中央避难所和疏散人员 ( V = T ∪ { 0 } ∪ W ) (V=T\cup\{0\}\cup W) (V=T∪{0}∪W) 。集合 A A A包括连接节点的边,链接疏散中心与中央避难所。对于每个疏散中心,都定义了一个时间窗口集,指定了车辆在访问疏散中心时,必须在该疏散中心的可用时间窗口内开始服务。
3.求解方法
HPSO-HA
PSO编码中每个粒子由 n n n个维度表示(其中 n n n表示为服务中心的数量),每个维度包含一个介于 [ 0 , n ] [0,n] [0,n]之间数值,较小的数值表示该服务中心具有更高的访问优先级,并会被分配到子旅行中。
由于在子旅行生成过程中没有考虑时间窗口约束,我们对每个子旅行应用路线时长最小化算法(设计的启发式方法)。如果最小化后的旅行时长在规定的时间限制内,则该解是可行的。否则,我们根据以下标准逐步从子旅行中移除服务中心,直到旅行时长符合限制。
B
j
=
Δ
d
j
/
c
j
B_j=\Delta d_j/c_j
Bj=Δdj/cj
其中, Δ d j \Delta d_j Δdj为移除服务中心 j j j所节省的时间, c j c_j cj为服务中心 j j j所覆盖的客户数量。
通过调整仓库出发时间,可以在不违反时间窗口约束的前提下减少路线总时长,甚至将不可行的路线变为可行。Savelsbergh 引入的前向时间松弛方法用于延迟客户处的服务开始时间,但在多时间窗口情况下效果较差。Tricoire 等人提出的精确算法通过优化旅行时间和客户服务时间,能够最小化路线时长,且在满足特定条件下可返回最优解。
本文还实现了最小向后时间松弛算法(MBTSA),该算法通过计算时间窗口内的延迟范围,优化路线时长,并在调整过程中确保不违反时间窗口约束,最终为具有多个时间窗口的最小时长问题提供最优解。
CBC算法 参看原论文。
4.结果展示
鉴于在合理时间内获得高质量解的重要性,我们提出的HPSO-HA启发式方法证明是有效的疏散规划管理解决方案。结果表明,尽管当前模型较为复杂,所提出的算法仍能在合理的时间范围内获得合适的解决方案。
5.参考文献
[1] Bigdellou S, Chen Q, Beheshti S. A novel Hybrid PSO-Heuristic Algorithm with Combinatorial Benders’ Cuts for maximal evacuation planning in wildfire disasters[J]. Applied Mathematical Modelling, 2025, 145: 116131.