---
## 🚗 轨迹优化 | 基于边界中间值问题(BIVP)的路径平滑求解器
### 用数学之美解决自动驾驶中的“抖动路径”问题
> **摘要**:传统路径规划算法(如A*、RRT)生成的轨迹往往存在转折突兀、曲率不连续等问题。本文提出一种基于**边界中间值问题(Boundary Intermediate Value Problem, BIVP)**的轨迹平滑优化方法,将路径平滑问题转化为带约束的二次规划(QP)求解,实现**低计算开销的高阶平滑轨迹生成**。附完整C++/Python代码及仿真对比。
---
### 一、问题背景:为什么需要路径平滑?
在自动驾驶、机器人导航中,规划模块生成的路径通常由一系列离散点组成(如下图红色折线):

直接跟踪此类路径会导致:
1. **车辆横向加速度突变** → 乘坐不适
2. **方向盘转角不连续** → 控制困难
3. **无法满足动力学约束** → 安全隐患
**目标**:生成一条满足以下条件的平滑轨迹:
- **C²连续**(位置、速度、加速度连续)
- **边界约束**(起点/终点位置、速度)
- **曲率有界**(符合车辆最小转弯半径)
---
### 二、传统方法 vs BIVP方案
<