基于边界中间值问题(BIVP)的路径平滑求解器**的技术博客,包含理论解析、创新设计、代码实现(C++/Python)及仿真对比

 

---

## 🚗 轨迹优化 | 基于边界中间值问题(BIVP)的路径平滑求解器  
### 用数学之美解决自动驾驶中的“抖动路径”问题  

> **摘要**:传统路径规划算法(如A*、RRT)生成的轨迹往往存在转折突兀、曲率不连续等问题。本文提出一种基于**边界中间值问题(Boundary Intermediate Value Problem, BIVP)**的轨迹平滑优化方法,将路径平滑问题转化为带约束的二次规划(QP)求解,实现**低计算开销的高阶平滑轨迹生成**。附完整C++/Python代码及仿真对比。

---

 

### 一、问题背景:为什么需要路径平滑?

在自动驾驶、机器人导航中,规划模块生成的路径通常由一系列离散点组成(如下图红色折线):  

![](https://i.imgur.com/5Z7wC9l.png)  

直接跟踪此类路径会导致:  
1. **车辆横向加速度突变** → 乘坐不适  
2. **方向盘转角不连续** → 控制困难  
3. **无法满足动力学约束** → 安全隐患  

**目标**:生成一条满足以下条件的平滑轨迹:  
- **C²连续**(位置、速度、加速度连续)  
- **边界约束**(起点/终点位置、速度)  
- **曲率有界**(符合车辆最小转弯半径)  

---

### 二、传统方法 vs BIVP方案

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Loving_enjoy

感谢亲们的支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值