AI常用评估指标

一个AI模型性能的好坏,需要通过评估指标来间接地反映,因此如何选择合适的评估指标对于一个AI模型来说显得尤为重要,本文主要介绍了在不同AI任务当中常见的几个评价指标。

一、分类任务

1.混淆矩阵

混淆矩阵(Confusion Matrix)是在分类问题中用于评估模型性能的表格,它展示了模型在测试数据集上的预测结果与实际标签之间的关系。混淆矩阵是一个二维的表格,其中包含以下四个重要的指标:

(1)真正例(True Positive,TP):模型正确地将正类别样本预测为正类别。

(2)真负例(True Negative,TN):模型正确地将负类别样本预测为负类别。

(3)假正例(False Positive,FP):模型将负类别样本错误地预测为正类别。

(4)假负例(False Negative,FN):模型将正类别样本错误地预测为负类别。

2. 准确度(Accuracy):

模型正确预测的样本占总样本数的比例,计算方法为 :

3. 精确度(Precision):

正类别的预测正确率,计算方法为:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值