LeetCode—maximum-subarray(最大子数组的和)—java

本文介绍了一种寻找具有最大和的连续子数组的算法。通过动态规划的方法,使用一个辅助数组来记录每一步的最大和,并更新全局最大值。此算法的时间复杂度为O(n),适用于数组中至少有一个元素的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array[−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray[4,−1,2,1]has the largest sum =6.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.

思路解析:https://www.cnblogs.com/springfor/p/3877058.html

  • 求连续的数组值,相加的和最大和

  • 试想一下,如果我们从头遍历这个数组。对于数组中的其中一个元素,它只有两个选择:

     1. 要么加入之前的数组加和之中(跟别人一组)

     2. 要么自己单立一个数组(自己单开一组)

所以对于这个元素应该如何选择,就看他能对哪个组的贡献大。如果跟别人一组,能让总加和变大,还是跟别人一组好了;如果自己起个头一组,自己的值比之前加和的值还要大,那么还是自己单开一组好了。

所以利用一个big数组,记录每一轮big的最大值,big[i]表示当前这个元素是跟之前数组加和一组还是自己单立一组好,然后维护一个全局最大值即为答案。

代码

public class Solution {
    public int maxSubArray(int[] A) {
        int[] big =new int[A.length];//big数组记录遍历到当前i时最大的和。
        int max = A[0];//记录所有的最大值
        big[0]=A[0];
        for(int i=1;i<A.length;i++){
            big[i]=Math.max(A[i],big[i-1]+A[i]);
            max = Math.max(max,big[i]);
        }
        return max;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值