【路径规划】粒子群算法动态化学品车辆运输路径规划【含Matlab源码 7336期】

✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信或扫描文章底部QQ二维码。
在这里插入图片描述
🍎个人主页:Matlab凤凰涅槃
🏆代码获取方式:扫描文章底部QQ二维码

⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
Matlab路径规划(凤凰涅槃版)

⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!

⛄一、粒子群算法动态化学品车辆运输路径规划

粒子群算法(Particle Swarm Optimization, PSO)是一种模拟鸟群或鱼群觅食行为的优化算法,在化学品车辆运输路径规划中应用广泛。其工作原理和流程主要包括以下几个步骤:

1 初始化:创建一组虚拟粒子代表可能的运输路线,每个粒子的位置表示一个具体的路径,速度表示路径改进的可能性。

2 评估适应度:计算每条路径的总成本(如运输时间、距离、能耗等),作为粒子的适应度值。目标是最小化这个成本。

3 局部搜索:每个粒子基于当前最优位置(自身最佳位置和全局最佳位置)更新其速度和位置,尝试寻找更优路径。

4 全局更新:所有粒子根据群体中最优的个体更新他们的个人最佳位置,这促进了算法在全球范围内的探索。

5 迭代过程:不断重复上述步骤,直到达到预设的迭代次数或者找到满足精度要求的最佳路径。

6 信息交流:在PSO中,粒子间的信息共享有助于避免陷入局部最优解,增强了算法的全局寻优能力。

7 收敛检查:确保算法已收敛到全局最优解,或者达到预定的迭代次数后停止。

8 路径生成:最终得到的是粒子群体中具有最低成本的运输路径方案。

⛄二、部分源代码和运行步骤

1 部分代码

clc;clear

s=2;e=42; %设定起始点

c1=1;c2=1;r1=0.5;r2=0.5;
Pstep=0.02;Pmax=0.8;Wmax=0.9;Wmin=0.3; %设置基本参数

%50个城市坐标为:
C=[-68 -807
282 -996
-348 -505
-407 -512
-413 -149
-466 -214
-217 -281
196 -454
412 -135
-202 640
511 -11
-691 168
202 440
-513 450
-940 409
-827 656
-188 241
12 105
825 -398
654 202
902 581
975 -231
1179 -3
392 775
-362 705
-143 1094
-30 1032
58 981
126 1289
510 719
-239 1152
-592 984
316 1203
678 644
31 1332
506 1117
566 1312
1050 1145
1022 981
1513 1049
1488 525
632 1508
277 1511
628 -616
1270 552
1391 264
754 356
766 1242
900 1197
1280 1100
];
D=sparse(50,50);
D(2,1)=397;
D(8,1)=235;
D(4,1)=354;
D(1,2)=397;
D(44,2)=166;
D(4,3)=104;
D(6,3)=111;
D(7,3)=184;
D(3,4)=104;
D(1,4)=354;
D(6,4)=150;
D(6,5)=133;
D(7,5)=122;
D(17,5)=346;
D(3,6)=111;
D(4,6)=150;
D(5,6)=133;
D(12,6)=296;
D(5,7)=122;
D(3,7)=184;
D(18,7)=350;
D(8,7)=375;
D(1,8)=235;
D(9,8)=430;
D(44,8)=320;
D(8,9)=430;
D(11,9)=141;
D(18,9)=385;
D(19,9)=342;
D(13,10)=300;<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值