✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信或扫描文章底部QQ二维码。
🍎个人主页:Matlab凤凰涅槃
🏆代码获取方式:扫描文章底部QQ二维码
⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(凤凰涅槃版)
⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!
⛄一、Simulink四旋翼无人机在SE(3)上的几何控制仿真
Simulink是一款由MATLAB公司提供的工具箱,广泛用于系统建模和仿真。在四旋翼无人机的SE(3)几何控制仿真中,原理主要包括对无人机的姿态(旋转和平移)进行数学建模,以及在Simulink环境中构建相应的控制系统模型。以下是基本的原理和流程:
1 原理:
SE(3)表示3维欧几里得空间加上所有刚体变换(旋转和平移),是描述机器人在空间自由度运动的理想框架。
对于四旋翼无人机,需要建立一个包含姿态角(yaw, pitch, roll)、位置(x, y, z)和速度(vx, vy, vz)等状态的模型。控制目标可能是保持稳定的轨迹、精确的定位等。
几何控制利用了四元数或其他数学工具来有效地处理姿态变化,同时考虑到全局定位信息。
2 流程:
(1)模型定义:使用Simulink创建一个模块化的模型,包括传感器模块(接收IMU数据),动力学模块(基于电机动力学计算转矩),以及姿态和位置更新模块(使用卡尔曼滤波或其他算法整合来自各种传感器的数据)。
(2)SE(3)转换:将姿态数据转换成四旋翼相对于世界坐标的矩阵表示(如旋转矩阵和平移向量)。
(3)控制律设计:设计几何控制律,比如基于四旋翼动力学的PID控制或更复杂的控制策略,比如差分进化、模型预测控制等,来生成对应每个状态的控制输入。
(4)模型仿真:在Simulink中连接各个模块并模拟环境交互,观察和调整控制效果。
迭代改进:根据仿真结果调整控制参数,分析系统动态响应,直至满足设计需求。
⛄二、部分源代码和运行步骤
1 部分代码
function out = untitled(u,P)
% inputs
f = u(1);
M = reshape(u(2:4),3,1);
% states
p_m = reshape(u(5:7),3,1);
v_m = reshape(u(8:10),3,1);
R_m = reshape(u(11:19),3,3);
q_m = reshape(rotm2quat(R_m),4,1);
Omega_m = reshape(u(20:22),3,1);
t = u(23);
persistent ekf;
if isempty(ekf)
% 初始状态和协方差
initialState = ones(17,1)*1e-1;
initialState(7:10)=[1;0;0;0];
initialCovariance = ones(17)*1e-1+eye(17)*1;
processNoise=eye(17)*1e-2;
measurementNoise=eye(13)*1e-2;
% 创建trackingEKF对象
ekf = trackingEKF('StateTransitionFcn',@stateTrans