✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信或扫描文章底部QQ二维码。
🍎个人主页:Matlab凤凰涅槃
🏆代码获取方式:扫描文章底部QQ二维码
⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(凤凰涅槃版)
⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!
⛄一、超声波数据和粒子滤波器2D机器人定位和路径规划
超声波数据和粒子滤波器在2D机器人定位和路径规划中的应用主要涉及传感器信息融合和不确定性建模。
(1)超声波数据:
超声波传感器能发射声波并测量反射回来的时间,通过三角法计算出与障碍物的距离,形成二维环境的障碍物分布图。
数据采集:机器人持续发送超声波信号,接收返回信号,构建环境感知模型。
(2)粒子滤波器(Particle Filter, PF):
粒子滤波器是一种基于概率的方法,通过一组随机采样的“粒子”来表示潜在的状态分布。
过程模型:每一步粒子表示机器人的一个可能位置,同时模拟运动学模型(例如匀速直线运动或加速度模型)生成下一时刻的粒子位置。
测量模型:将超声波数据与当前粒子位置对比,通过概率密度函数计算每个粒子与超声波数据的匹配度。
(3)定位流程:
初始化粒子集合,每个粒子代表一种可能的机器人位置和状态。
更新阶段:根据超声波数据,计算每个粒子与真实环境的匹配概率,根据贝叶斯法则更新粒子位置的概率分布。
重采样:基于粒子权重,筛选出更有可能的粒子,淘汰低置信度粒子,保持有效的粒子集合多样性。
概率平均:最终的机器人位置估计是所有粒子位置的加权平均。
(4)路径规划:
成定位后,根据目标位置和机器人当前位置,使用算法(如A*、Dijkstra等)规划出从当前位置到目标位置的最优路径,避开障碍物。
将规划结果转化为每个粒子的路径指令,指导机器人逐点移动。
(5)闭环反馈:
实时调整路径规划,考虑到机器人的实际移动误差,通过迭代优化不断调整路径。
⛄二、部分源代码和运行步骤
1 部分代码
clf; %clears figures
clc; %clears console
clear; %clears workspace
axis equal; %keeps the x and y scale the same
map=[0,0;60,0;60,45;45,45;45,59;106,59;106,105;0,105]; %default map
disp(‘You can set up a new BotSim object with the code:’);
disp(‘botSim = BotSim(map)’);
disp(’ ');
botSim = BotSim(map); %sets up a botSim object a map, and debug mode on.
disp(‘As debug mode is on by default, you can set the angle and position of the robot’);
disp(‘with setBotPos() and setBotAng(). During marking you will not be able’);
input(‘to access these values. Press enter to initialise the robot:’);
botSim.se