✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信或扫描文章底部QQ二维码。
🍎个人主页:Matlab凤凰涅槃
🏆代码获取方式:扫描文章底部QQ二维码
⛳️座右铭:行百里者,半于九十。
更多Matlab路径规划仿真内容点击👇
①Matlab路径规划(凤凰涅槃版)
⛳️关注微信公众号Matlab王者助手或Matlab海神之光,更多资源等你来!!
⛄一、A_star算法无人机避障三维路径规划(含动态障碍物)
A*算法是一种启发式搜索算法,常用于解决路径规划问题,包括无人机避障三维路径规划。其基本原理是通过优先探索最有可能达到目标状态的节点,结合对未知区域的成本估计(通常采用曼哈顿距离、欧几里得距离等),寻找从起点到终点的最优路径。
在无人机避障的三维路径规划中,A*算法的具体流程如下:
(1)初始化:
设置起始点(源位置)和目标点(需要到达的位置)。
初始化开放列表(待探索节点集合)和关闭列表(已访问节点集合)。
创建一个空白的地图,其中每个网格代表三维空间的一个小区域,并标记障碍物区域为不可穿越。
(2)评估函数:
使用F值(当前步长+估计到目标的总成本)和G值(已走过的实际成本)计算每个节点的费用。
选择F值最小的节点作为当前节点。
(3)搜索过程:
如果当前节点是目标节点,则找到一条路径并停止搜索。
否则,考虑所有相邻的节点,检查它们是否可行(未被标记为障碍物)。
对于每个相邻节点,更新其G和F值,然后将其添加到开放列表,如果已经在关闭列表中,则比较新旧值决定是否更新。
(4)动态避障:
针对动态障碍物,实时监测环境变化,并调整路径规划策略。当检测到新的障碍物时,可以更新地图,重新计算路径,或者利用避障策略(如预测移动方向、生成临时安全区域)避开障碍。
(5)路径回溯:
当找到目标节点时,沿着F值递减的顺序从目标节点回溯到起始节点,记录下经过的所有节点,形成完整的路径。
⛄二、部分源代码和运行步骤
1 部分代码
%% 定义三维地图数组
clc
clear
close all
warning off
MAX_X=10;
MAX_Y=10;
MAX_Z=10;
MAP=2*(ones(MAX_X,MAX_Y,MAX_Z)); % 元素为均2的10x10x10矩阵
%% 提示是否需要手动输入地图信息
button=questdlg(‘是否需要手动输入地图信息?’,‘输入地图’,‘No’);
if strcmp(‘No’,button)==1
%% 选择读取地图信息
map1;
%% 选择手动输入环境信息
else
%% 获取信息,初始化
% 障碍点值为-1,目标点值为0,机器位置值为1,空间单元值为2(已赋)
j=0;
axis([1 MAX_X+1 1 MAX_Y+1])%设定xy轴的限,10个格11条线
grid on;%添加网格线
hold on;%保持现有图像以便后续命令添加到图像上
n=0;%表示障碍点的个数
%% 获得目标点
pause(1);%暂停1个单位时间
h=msgbox(‘请用鼠标左键选择一个目标点