矩阵链乘法(动态规划)

本文详细介绍了矩阵链乘法问题的动态规划解决方案。通过动态规划法,我们可以找到计算矩阵乘积的最优括号顺序,以达到最低的运算代价。核心代码展示了如何构建状态转移方程,并使用INT_MAX作为初始最大值来比较不同中间结果。时间复杂度为O(n^3),其中n是矩阵链中矩阵的数目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩阵链乘法(动态规划)

1.问题

在这里插入图片描述

2.解析

动态规划法:

在这里插入图片描述
在这里插入图片描述

3.设计

核心代码实现:
void MartixChainMultiply(){
    int q;
    for(int i=1;i<=n;i++){
        dp[i][i] = 0;
    }
    for(int l=2;l<=n;l++){
        for(int i=1;i<=n-l+1; i++){ 
            int j = i+l-1; 
            dp[i][j] = INT_MAX;
            for(int k=i;k<=j-1;k++){ 
                q = dp[i][k]+dp[k+1][j]+p[i-1]*p[k]*p[j];
                if(q< dp[i][j]){ 
                    dp[i][j] = q; Rec[i][j] = k; 
                } 
            }
        }
    } 
}

4.分析

时间复杂度:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值