【路径规划】局部路径规划算法比较附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

路径规划是机器人学和自动化领域中的一个核心问题,它旨在寻找从起始点到目标点的最佳路径,同时避开障碍物。路径规划可以分为全局路径规划和局部路径规划。全局路径规划是在已知环境地图的基础上,一次性规划出整个路径;而局部路径规划则是在机器人运行过程中,根据传感器获取的局部环境信息,实时调整和优化路径。本文将重点讨论几种常见的局部路径规划算法,并对它们进行比较。

1. 动态窗口法 (Dynamic Window Approach, DWA)

DWA是一种广泛应用的局部路径规划算法,它通过在机器人的速度空间中采样,预测机器人在不同速度下的轨迹,并评估这些轨迹的优劣来选择最佳速度。

优点:

  • 实时性好:

     DWA算法的计算效率较高,能够满足机器人实时避障的需求。

  • 考虑机器人动力学:

     DWA算法在轨迹预测时考虑了机器人的最大加速度、最大角速度等动力学约束,使得规划出的路径更符合机器人实际运动能力。

  • 易于理解和实现:

     算法原理相对简单,易于理解和实现。

缺点:

  • 容易陷入局部最优:

     在复杂环境下,DWA可能会导致机器人陷入局部最优,无法找到全局最佳路径。

  • 对参数敏感:

     算法性能受评价函数中各项权重参数的影响较大,需要仔细调整。

  • 不适用于高速运动:

     当机器人速度过高时,预测的轨迹可能不够准确,导致避障效果不佳。

2. 人工势场法 (Artificial Potential Field, APF)

人工势场法是一种直观且易于实现的路径规划方法。它将目标点视为一个引力源,对机器人产生“拉”的作用;将障碍物视为斥力源,对机器人产生“推”的作用。机器人在这两种力的合力作用下,向目标点移动并避开障碍物。

优点:

  • 原理简单,易于实现:

     算法思想直观,计算量小。

  • 实时性好:

     适用于实时避障。

  • 路径平滑:

     在理想情况下,生成的路径通常比较平滑。

缺点:

  • 容易陷入局部最优:

     当环境中存在U形障碍物或死胡同等情况时,机器人可能陷入局部最优,无法到达目标点。

  • 目标不可达:

     当目标点被障碍物包围时,机器人可能无法到达目标点。

  • 震荡问题:

     在障碍物密集区域或目标点附近,机器人可能出现震荡。

3. 反应式避障算法 (Reactive Obstacle Avoidance Algorithms)

反应式避障算法通常不进行显式的路径规划,而是根据传感器信息,直接生成控制指令,使机器人能够实时避开障碍物。常见的反应式避障算法包括:

  • 矢量场直方图法 (Vector Field Histogram, VFH/VFH+): VFH通过构建一个二维的极坐标直方图来表示障碍物分布,然后根据直方图选择最佳的前进方向。VFH+是VFH的改进版本,解决了VFH在某些情况下的局部震荡问题。

    • 优点:

       实时性好,对动态环境适应性强。

    • 缺点:

       容易陷入局部最优,不保证能到达目标点。

  • 避障线法 (Obstacle Avoidance Line, OAL): OAL通过在机器人前方设定多条避障线,根据避障线与障碍物的交点信息来调整机器人运动方向。

    • 优点:

       实现简单,计算量小。

    • 缺点:

       避障效果受避障线数量和分布的影响,对复杂环境适应性差。

反应式避障算法的共同优缺点:

  • 优点:

     实时性极佳,对未知环境和动态障碍物有较好的适应性。

  • 缺点:

     容易陷入局部最优,不保证能找到全局最佳路径,在某些情况下可能无法到达目标点。

4. 基于学习的局部路径规划算法

近年来,随着机器学习和深度学习技术的发展,基于学习的局部路径规划算法也逐渐兴起。这类算法通过让机器人从大量的环境中学习,自动提取出避障策略。

  • 强化学习:

     机器人通过与环境的交互,学习如何选择动作以最大化奖励。

  • 模仿学习:

     机器人通过模仿专家的行为来学习避障策略。

优点:

  • 对复杂环境的适应性强:

     学习到的策略可以处理各种复杂的环境。

  • 泛化能力强:

     训练好的模型可以泛化到新的未知环境中。

缺点:

  • 需要大量数据:

     训练模型需要大量的环境数据和专家数据。

  • 解释性差:

     学习到的策略通常是“黑箱”模型,难以解释其决策过程。

  • 计算资源需求高:

     模型训练和推理需要大量的计算资源。

总结与比较

算法名称

实时性

局部最优问题

动力学考虑

对环境的适应性

实现难度

动态窗口法 (DWA)良好容易中等中等
人工势场法 (APF)良好容易较差简单
反应式避障算法极佳容易良好简单
基于学习的算法依赖较小依赖极佳复杂

选择合适的局部路径规划算法需要综合考虑以下因素:

  • 机器人类型和动力学特性:

     不同的机器人有不同的运动能力和约束。

  • 环境复杂程度:

     环境中障碍物的数量、分布、是否动态等。

  • 实时性要求:

     机器人对路径规划的实时性要求。

  • 计算资源:

     可用的计算资源。

  • 是否需要全局最优:

     有些应用场景对全局最优路径要求较高,有些则更注重实时避障。

未来展望:

未来的局部路径规划算法将朝着以下方向发展:

  • 鲁棒性:

     提高算法对传感器噪声和环境不确定性的鲁棒性。

  • 可解释性:

     提高基于学习算法的解释性,使其决策过程更加透明。

  • 多传感器融合:

     融合多种传感器信息,提高环境感知能力和路径规划精度。

  • 多机器人协作:

     研究多机器人协同局部路径规划,提高任务效率。

总之,局部路径规划是机器人自主导航的关键技术之一。每种算法都有其独特的优缺点,在实际应用中需要根据具体场景和需求进行选择和组合。随着技术的不断发展,未来的局部路径规划算法将更加智能、高效和鲁棒。

⛳️ 运行结果

图片

🔗 参考文献

[1] 周华鹏.视觉导航中局部路径规划方法研究及嵌入式实现[D].南京航空航天大学[2025-09-04].DOI:10.7666/d.y1812237.

[2] 伍永健,陈跃东,陈孟元.改进QPSO和Morphin算法下移动机器人混合路径规划[J].电子测量与仪器学报, 2017, 31(2):7.DOI:10.13382/j.jemi.2017.02.019.

[3] 张志文,刘伯威,张继园,等.麻雀搜索算法-粒子群算法与快速扩展随机树算法协同优化的智能车辆路径规划[J].中国机械工程, 2024, 35(6):993-999.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值