✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
1. 引言
瑞利波反演是地震学中重要的研究课题,其目标是利用地震波形数据反演地下介质的结构和性质。近年来,基于神经网络的瑞利波反演方法得到了广泛关注,并取得了显著的进展。然而,神经网络模型的训练需要大量的样本数据,而瑞利波反演所需的样本数据通常难以获取。因此,样本选择方法对于基于神经网络的瑞利波反演方法至关重要。
2. 参数反演
参数反演是瑞利波反演中常用的方法之一。其基本原理是将地下介质的参数化,并通过数值模拟计算不同参数组合下瑞利波的波形特征,然后将模拟波形与实际观测波形进行比较,通过优化算法找到最佳的参数组合,从而反演地下介质的结构和性质。
参数反演方法的精度取决于模型参数化的精度和数值模拟的准确性。同时,参数反演方法也需要大量的样本数据进行训练,才能保证模型的泛化能力。
3. 样本选择方法
为了提高基于神经网络的瑞利波反演方法的精度和效率,需要选择合适的样本数据进行训练。常用的样本选择方法包括:
-
随机采样: 从参数空间中随机选择样本进行训练。这种方法简单易行,但可能会导致模型训练效率低下,泛化能力不足。
-
网格采样: 在参数空间中均匀地划分网格,并从每个网格中选择一个样本进行训练。这种方法可以保证样本的覆盖范围,但可能会导致样本数量过多,训练效率低下。
-
基于重要性采样: 根据样本的重要性进行采样。重要性采样可以提高模型训练效率,但需要对样本的重要性进行评估,这通常需要专家知识或其他辅助信息。
-
基于主动学习: 通过与模型交互,选择对模型训练最有效的样本进行训练。主动学习可以提高模型训练效率,但需要设计有效的交互策略。
4. 基于神经网络的瑞利波反演方法
基于神经网络的瑞利波反演方法通常包括以下步骤:
-
数据预处理: 对瑞利波波形数据进行预处理,例如滤波、归一化等。
-
模型训练: 使用样本数据训练神经网络模型,使模型能够学习瑞利波波形与地下介质参数之间的关系。
-
模型预测: 使用训练好的神经网络模型对实际观测的瑞利波波形进行预测,并根据预测结果反演地下介质的结构和性质。
5. 结论
样本选择方法对于基于神经网络的瑞利波反演方法至关重要。选择合适的样本数据可以提高模型训练效率和精度,并保证模型的泛化能力。未来,还需要进一步研究基于主动学习和强化学习的样本选择方法,以进一步提高模型训练效率和精度。
📣 部分代码
function [mean_d,std_d,data_norm] = normalized_fun(data_matrix)
mean_d = mean(data_matrix);
std_d = std(data_matrix);
dNorm_x = size(data_matrix,2);
data_norm = zeros(size(data_matrix,1),size(data_matrix,2));
for i = 1:1:dNorm_x
data_norm(:,i) = (data_matrix(:,i)-mean_d(i))/std_d(i);
end
end
⛳️ 运行结果
🔗 参考文献
Xiao-Hui Yang, Qiang Zu, Yuanyuan Zhou, Peng Han *, Xiaofei Chen (2023). A Sample Selection Method for Neural-network-based Rayleigh Wave Inversion. IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2023.3341955.
🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类