【参数反演】基于神经网络的瑞利波反演的样本选择方法matlab代码

本文探讨了基于神经网络的瑞利波反演在地震学中的应用,强调了样本选择在模型训练中的关键作用。介绍了参数反演方法,对比了随机采样、网格采样、重要性采样和主动学习的不同策略。未来研究方向聚焦于主动学习和强化学习在样本选择上的优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

1. 引言

瑞利波反演是地震学中重要的研究课题,其目标是利用地震波形数据反演地下介质的结构和性质。近年来,基于神经网络的瑞利波反演方法得到了广泛关注,并取得了显著的进展。然而,神经网络模型的训练需要大量的样本数据,而瑞利波反演所需的样本数据通常难以获取。因此,样本选择方法对于基于神经网络的瑞利波反演方法至关重要。

2. 参数反演

参数反演是瑞利波反演中常用的方法之一。其基本原理是将地下介质的参数化,并通过数值模拟计算不同参数组合下瑞利波的波形特征,然后将模拟波形与实际观测波形进行比较,通过优化算法找到最佳的参数组合,从而反演地下介质的结构和性质。

参数反演方法的精度取决于模型参数化的精度和数值模拟的准确性。同时,参数反演方法也需要大量的样本数据进行训练,才能保证模型的泛化能力。

3. 样本选择方法

为了提高基于神经网络的瑞利波反演方法的精度和效率,需要选择合适的样本数据进行训练。常用的样本选择方法包括:

  • 随机采样: 从参数空间中随机选择样本进行训练。这种方法简单易行,但可能会导致模型训练效率低下,泛化能力不足。

  • 网格采样: 在参数空间中均匀地划分网格,并从每个网格中选择一个样本进行训练。这种方法可以保证样本的覆盖范围,但可能会导致样本数量过多,训练效率低下。

  • 基于重要性采样: 根据样本的重要性进行采样。重要性采样可以提高模型训练效率,但需要对样本的重要性进行评估,这通常需要专家知识或其他辅助信息。

  • 基于主动学习: 通过与模型交互,选择对模型训练最有效的样本进行训练。主动学习可以提高模型训练效率,但需要设计有效的交互策略。

4. 基于神经网络的瑞利波反演方法

基于神经网络的瑞利波反演方法通常包括以下步骤:

  • 数据预处理: 对瑞利波波形数据进行预处理,例如滤波、归一化等。

  • 模型训练: 使用样本数据训练神经网络模型,使模型能够学习瑞利波波形与地下介质参数之间的关系。

  • 模型预测: 使用训练好的神经网络模型对实际观测的瑞利波波形进行预测,并根据预测结果反演地下介质的结构和性质。

5. 结论

样本选择方法对于基于神经网络的瑞利波反演方法至关重要。选择合适的样本数据可以提高模型训练效率和精度,并保证模型的泛化能力。未来,还需要进一步研究基于主动学习和强化学习的样本选择方法,以进一步提高模型训练效率和精度。

📣 部分代码

function [mean_d,std_d,data_norm] = normalized_fun(data_matrix)mean_d = mean(data_matrix);std_d = std(data_matrix);dNorm_x = size(data_matrix,2);data_norm = zeros(size(data_matrix,1),size(data_matrix,2));for i = 1:1:dNorm_x    data_norm(:,i) = (data_matrix(:,i)-mean_d(i))/std_d(i);endend

⛳️ 运行结果

🔗 参考文献

Xiao-Hui Yang, Qiang Zu, Yuanyuan Zhou, Peng Han *, Xiaofei Chen (2023). A Sample Selection Method for Neural-network-based Rayleigh Wave Inversion. IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2023.3341955.

🎈 部分理论引用网络文献,若有侵权联系博主删除
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值