【面试篇】HashMap1.7和HashMap1.8的详细区别对比

本文深入剖析了HashMap在JDK1.7和JDK1.8中的实现差异,包括存储结构、初始化方式、hash值计算方法、数据存放规则及扩容机制等方面,并详细解释了这些差异带来的性能影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【面试篇】HashMap1.7和HashMap1.8的详细区别对比

【面试篇】数据结构-哈希表
【面试篇】HashMap常见面试题目
【面试篇】HashMap1.7和HashMap1.8的详细区别对比
【面试篇】ConcurrentHashMap1.8 扩容细节
【面试篇】ConcurrentHashMap1.7和1.8详解对比

不同之处JDK1.7JDK1.8
存储结构数组+链表数组+链表+红黑树
初始化方式单独函数:inflateTable()直接集成到了resize()
hash值计算扰动处理=4次位运算+5次异或运算扰动处理=1次位运算+1次异或运算
存放数据的规则无冲突时,存放数组;冲突时,存放链表无冲突时,存放数组;冲突&链表长度<8: 存放链表;冲突&链表长度>>8(数组长度>64)转换为红黑树JDK1.7
插入数据方式头插法尾插法
扩容后存储位置的计算方式按之前索引的计算方式:hashcode->>扰动函数->>(h&length-1)按照扩容后的规律计算(即扩容后的位置=原位置 or 原位置+旧容量)

一、存储结构方面的变化

背景:HashMap通过key的hashCode经过扰动函数处理过后得到hash值,然后通过(n-1)&hash判断当前元素存放的位置,如果当前位置存在元素的话,就判断该元素与要存入的元素的hash值以及key是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突(红黑树).

JDK1.7:数组 + 链表

JDK1.8:数组 + 链表 + 红黑树

引入原因:解决哈希碰撞后,链表过长从而导致索引效率变化的问题

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5uJquton-1607576691146)(D:\software\typora\workplace\imgs_hashmap\1.png)]

题目一、为什么选择6和8?

红黑树的节点占用空间是普通链表节点的2倍,而且碰撞节点的分布频率满足泊松分布,链表长度达到8个元素的概率为0.00000006,几乎是不可能事件。

中间有差值可以防止链表和红黑树之间的频繁转换。

假如:如果设计成链表个数超过8就链表转换为红黑树,链表个数小于8就红黑树结构转换成链表,链表个数在8左右徘徊,就会频繁进行链表转红黑树,红黑树转链表的操作。

题目二、为什么扩容时还要求数组大小大于64?

这里不仅仅判断链表个数大于等于 8,还判断了数组大小,数组容量小于 64 没有立即转化的原因,猜测主要是因为红黑树占用的空间比链表大很多,转化也比较耗时,所以数组容量小的情况下冲突严重,我们可以先尝试扩容,看看能否通过扩容来解决冲突的问题。

二、初始化HashMap对象

/**
  * 函数使用原型
  */
  Map<String,Integer> map = new HashMap<String,Integer>();

 /**
   * 源码分析:主要是HashMap的构造函数 = 4个
   * 仅贴出关于HashMap构造函数的源码
   */

public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable{

    // 省略上节阐述的参数
    
  /**
     * 构造函数1:默认构造函数(无参)
     * 加载因子 & 容量 = 默认 = 0.75、16
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
    }

    /**
     * 构造函数2:指定“容量大小”的构造函数
     * 加载因子 = 默认 = 0.75 、容量 = 指定大小
     */
    public HashMap(int initialCapacity) {
        // 实际上是调用指定“容量大小”和“加载因子”的构造函数
        // 只是在传入的加载因子参数 = 默认加载因子
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
        
    }

    /**
     * 构造函数3:指定“容量大小”和“加载因子”的构造函数
     * 加载因子 & 容量 = 自己指定
     */
    public HashMap(int initialCapacity, float loadFactor) {

        // 指定初始容量必须非负,否则报错  
            if (initialCapacity < 0)  
           throw new IllegalArgumentException("Illegal initial capacity: " +  
                                           initialCapacity); 

        // HashMap的最大容量只能是MAXIMUM_CAPACITY,哪怕传入的 > 最大容量
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;

        // 填充比必须为正  
        if (loadFactor <= 0 || Float.isNaN(loadFactor))  
            throw new IllegalArgumentException("Illegal load factor: " +  
                                           loadFactor);  
        // 设置 加载因子
        this.loadFactor = loadFactor;

        // 设置 扩容阈值
        // 注:此处不是真正的阈值,仅仅只是将传入的容量大小转化为:>传入容量大小的最小的2的幂,该阈值后面会重新计算
        // 下面会详细讲解 ->> 分析1
        this.threshold = tableSizeFor(initialCapacity); 

    }

    /**
     * 构造函数4:包含“子Map”的构造函数
     * 即 构造出来的HashMap包含传入Map的映射关系
     * 加载因子 & 容量 = 默认
     */

    public HashMap(Map<? extends K, ? extends V> m) {

        // 设置容量大小 & 加载因子 = 默认
        this.loadFactor = DEFAULT_LOAD_FACTOR; 

        // 将传入的子Map中的全部元素逐个添加到HashMap中
        putMapEntries(m, false); 
    }
}

   /**
     * 分析1:tableSizeFor(initialCapacity)
     * 作用:将传入的容量大小转化为:>传入容量大小的最小的2的幂
     * 与JDK 1.7对比:类似于JDK 1.7 中 inflateTable()里的 roundUpToPowerOf2(toSize)
     */
    static final int tableSizeFor(int cap) {
     int n = cap - 1;
     n |= n >>> 1;
     n |= n >>> 2;
     n |= n >>> 4;
     n |= n >>> 8;
     n |= n >>> 16;
     return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

背景:HashMap的对象,包含4个构造函数:

  • 默认构造函数(无参);
  • 指定容量大小的构造函数;
  • 指定容量大小和负载因子的构造函数;
  • 包含子Map的构造函数

在构造函数中仅用于初始化容量大小(capacity)、负载因子(load factor),但未真正初始化哈希表,即初始化存储数组table。真正初始话哈希表(初始化数组table)是在第一次添加键值对的时候,即第一次调用put方法时,进行初始化。

JDK1.7:在put方法添加元素时会判断table是否为空,若空,则调用单独的初始化函数inflateTable();

JDK1.8:在put方法添加元素时会判断table是否为空,若空,则调用resize()扩容函数;

构建HashMap实例时有两个重要的参数,会影响其性能:初始大小负载因子。初始大小用来规定哈希表数组的长度,即桶的个数。负载因子用来表示哈希表元素的填满程度,越大则表示允许填满的元素就越多,哈希表的空间利用率就越高,但是冲突的机会也就增加了。反之,越小则冲突的机会就会越少,但是空间很多就浪费了。

题目一:为什么负载因子是0.75?

扩容时的临界值由【负载因子】和【当前容器的容量大小】来确定。即hashMap.size>=Capactity x loadFactory

负载因子选择0.75主要是在提高空间利用率和减少查询成本的折中下,节点出现在hash桶中遵循泊松分布的情况下,选择0.75。

  • 负载因子过高,如1,虽然减少了空间的开销,提高了空间的利用率,但是增加了查询的时间成本;空间效率上去,时间效率下来了。
  • 负载因子过低,如0.5,虽然可以减少查询的时间成本,但空间利用率很低,提高了rehash操作的次数。时间效率上去,空间效率下来了。

总的来说,HashMap在负载因子0.75的时候,空间利用率,满足泊松分布,而且避免了相当多的Hash冲突,提升了时间效率。

题目二:为什么数组容量必须是2次幂?

桶的索引计算公式为 i = (n-1) & hash。效果等于与 hash%n 的计算效果,但是位运算比取余运算要高效的多。

如果n为2次幂,那么n-1的低位就全是1,哈希值进行与操作时可以保证低位的值不变,从而保证分布均匀,不会受到与运算对数据的变化影响。

数组取2次幂的时候:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uXm7pAAc-1607576691149)(D:\software\typora\workplace\imgs_hashmap\2.png)]

数组不取2次幂的话,会出现重复的数据,而且数组元素分布不均匀,且数组上的某些位置,永远也用不到。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-toh6WEU1-1607576691151)(D:\software\typora\workplace\imgs_hashmap\3.png)]

三、向HashMap添加数据

3.1 判断数组是否为空

  • jdk1.7:若空,则调用单独的初始化函数inflateTable();
  • jdk1.8:若空,则调用resize()函数。

不能空,则计算数据在hashMap的索引位置。

3.2 计算数据在hashMap的索引值

计算要添加数据在HashMap中的桶索引值,可分为以下两步:第一步计算Hash值;第二步计算索引值。

  • 第一步计算Hash值
    • 先计算哈希码
    • 再进行扰动函数操作
  • 第二步计算索引值
    • 通过hash&(length-1)(效果等同于hash%length计算,但位运算比取余运算要高效的多)
1.计算哈希码

预备知识:计算哈希码 h=key.hashCode(). 根据对象的内存地址,经过特定算法返回一个哈希码。

a.整数
  • 整数值当做哈希值
  • 比如10的哈希值就是10
public static int hashCode(int value){
    return value;
}
b.浮点数
  • 将存储的二进制格式转为整数值
public static int hashCode(int value){
    return floatToIntBits(value);
}
c.Long的哈希值
public static int hashCode(int value){
    return (int)(value^(value>>>32));
}
d.Double的哈希值
public static int hashCode(int value){
    long bits = doubleToLongBits(value);
    return (int)(bits^(bits>>>32));
}

Long和Double中的>>>和^的作用是?

  • 高32bit和低32位混合计算出32bit的哈希值
  • 充分利用所有信息计算出哈
e.字符串的哈希值

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oa5gfOPP-1607576691153)(D:\software\typora\workplace\imgs_hashmap\4.png)]

关于31的探讨?

  1. 奇质数作为哈希运算中的乘法因子,得到的哈希值效果比较好(分布均匀)
  2. JVM对于位运算的优化,31*i可优化为(i<<5)-i ,最后选择31是因为速度比较快
2.扰动函数

JDK1.7: 要进行4次位运算 + 5次异或预算

// JDK 1.7实现:将 键key 转换成 哈希码(hash值)操作  = 使用hashCode() + 4次位运算 + 5次异或运算(9次扰动)
      static final int hash(int h) {
        h ^= k.hashCode(); 
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
     }

JDK1.8:进行1次位运算+1次异或运算

      // JDK 1.8实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 1次位运算 + 1次异或运算(2次扰动)
      // 1. 取hashCode值: h = key.hashCode() 
      // 2. 高位参与低位的运算:h ^ (h >>> 16)  
      static final int hash(Object key) {
           int h;
            return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
            // a. 当key = null时,hash值 = 0,所以HashMap的key 可为null      
            // 注:对比HashTable,HashTable对key直接hashCode(),若key为null时,会抛出异常,所以HashTable的key不可为null
            // b. 当key ≠ null时,则通过先计算出 key的 hashCode()(记为h),然后 对哈希码进行 扰动处理: 按位 异或(^) 哈希码自身右移16位后的二进制
     }

设计原因:

为了效率考虑,进行了缩减。

题目一、为什么不直接采用hashCode()处理的哈希码作为hashMap的下标位置?

计算出来的哈希码可能并不在数组大小范围内,从而导致无法匹配位置的情况。解决方法:哈希码 & (数组长度-1)。

哈希码是32位的,其取值范围为-(2^31) ~ 2^31-1之间。

而哈希表的容量范围最大值为2^30.

题目二、为什么要对哈希码进行二次处理,扰动计算?

为了进一步提高哈希低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性和均匀性,从而减少hash冲突。

3.3 数据具体在哈希表的存放

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Wdpz31Bl-1607576691155)(D:\software\typora\workplace\imgs_hashmap\5.png)]

JDK1.7 存放数据只需判断数组和链表

JDK1.8 存放数据需多次判断:数组、链表和红黑树

原因:提高查找效率;

JDK1.7在插入数据方式时用的头插法(将原位置的数据后移1位,然后再插入数据到该位置)

JDK1.8在插入数据方式时用的尾插法(直接插入到链表尾部/红黑树)

原因:在多线程并发情况下,头插法会出现链表成环的问题。(当然在多线程情况下,HashMap本就是线程非安全的。)

HashMap的线程不安全主要体现在以下两个方面:

  • 在JDK1.7下,当并发执行扩容操作时环形链和数据丢失的情况;
  • 在JDK1.8下,当并发执行put操作时会发生数据覆盖等情况。

3.4 HashMap的扩容机制resize()

resize()函数的使用有2种情况:

  • 初始化哈希表;
  • 当前数组容量过小,需扩容; (扩容的容量大小会变成原来的2倍,用位运算来加快计算的运行效率)。
/**
     * 分析4:resize()
     * 该函数有2种使用情况:1.初始化哈希表 2.当前数组容量过小,需扩容
     */
   final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table; // 扩容前的数组(当前数组)
    int oldCap = (oldTab == null) ? 0 : oldTab.length; // 扩容前的数组的容量 = 长度
    int oldThr = threshold;// 扩容前的数组的阈值
    int newCap, newThr = 0;

    // 针对情况2:若扩容前的数组容量超过最大值,则不再扩充
    if (oldCap > 0) {
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }

        // 针对情况2:若无超过最大值,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // 通过右移扩充2倍
    }

    // 针对情况1:初始化哈希表(采用指定 or 默认值)
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;

    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }

    // 计算新的resize上限
    if (newThr == 0) {
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }

    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;

    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;

                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);

                else { // 链表优化重hash的代码块
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引 + oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-LDiOP2S4-1607576691157)(D:\software\typora\workplace\imgs_hashmap\6.png)]

JDK1.7:插入前,判断是否需扩容

JDK1.8:插入结束后,判断是否需扩容

JDK1.7:扩容后存储位置的计算方式:全部按照之前的方法进行重新计算索引

JDK1.8:扩容后存储位置的计算方式:按照扩容后的规律计算(扩容后的位置=原位置or原位置+旧容量)

扩容后,若hash值新增参与运算的位=0,那么元素在扩容后的位置=原始位置;

扩容后,若hash值新增参与运算的位=1,那么元素在扩容后的位置 =原始位置+扩容后的旧位置;

3.5 从HashMap中获取数据

/**
   * 函数原型
   * 作用:根据键key,向HashMap获取对应的值
   */ 
   map.get(key)/**
   * 源码分析
   */ 
   public V get(Object key) {
    Node<K,V> e;
    // 1. 计算需获取数据的hash值
    // 2. 通过getNode()获取所查询的数据 ->>分析1
    // 3. 获取后,判断数据是否为空
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

/**
   * 分析1:getNode(hash(key), key))
   */ 
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;

    // 1. 计算存放在数组table中的位置
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {

        // 4. 通过该函数,依次在数组、红黑树、链表中查找(通过equals()判断)
        // a. 先在数组中找,若存在,则直接返回
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;

        // b. 若数组中没有,则到红黑树中寻找
        if ((e = first.next) != null) {
            // 在树中get
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);

            // c. 若红黑树中也没有,则通过遍历,到链表中寻找
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-r2bJKurP-1607576691157)(D:\software\typora\workplace\imgs_hashmap\7.png)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mind_programmonkey

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值