【面试篇】HashMap1.7和HashMap1.8的详细区别对比
【面试篇】数据结构-哈希表
【面试篇】HashMap常见面试题目
【面试篇】HashMap1.7和HashMap1.8的详细区别对比
【面试篇】ConcurrentHashMap1.8 扩容细节
【面试篇】ConcurrentHashMap1.7和1.8详解对比
不同之处 | JDK1.7 | JDK1.8 |
---|---|---|
存储结构 | 数组+链表 | 数组+链表+红黑树 |
初始化方式 | 单独函数:inflateTable() | 直接集成到了resize() 中 |
hash值计算 | 扰动处理=4次位运算+5次异或运算 | 扰动处理=1次位运算+1次异或运算 |
存放数据的规则 | 无冲突时,存放数组;冲突时,存放链表 | 无冲突时,存放数组;冲突&链表长度<8: 存放链表;冲突&链表长度>>8(数组长度>64)转换为红黑树JDK1.7 |
插入数据方式 | 头插法 | 尾插法 |
扩容后存储位置的计算方式 | 按之前索引的计算方式:hashcode->>扰动函数->>(h&length-1) | 按照扩容后的规律计算(即扩容后的位置=原位置 or 原位置+旧容量) |
一、存储结构方面的变化
背景:HashMap通过key的hashCode经过扰动函数处理过后得到hash值,然后通过
(n-1)&hash
判断当前元素存放的位置,如果当前位置存在元素的话,就判断该元素与要存入的元素的hash值以及key是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突(红黑树).
JDK1.7:数组 + 链表
JDK1.8:数组 + 链表 + 红黑树
引入原因:解决哈希碰撞后,链表过长从而导致索引效率变化的问题
题目一、为什么选择6和8?
红黑树的节点占用空间是普通链表节点的2倍,而且碰撞节点的分布频率满足泊松分布,链表长度达到8个元素的概率为0.00000006,几乎是不可能事件。
中间有差值可以防止链表和红黑树之间的频繁转换。
假如:如果设计成链表个数超过8就链表转换为红黑树,链表个数小于8就红黑树结构转换成链表,链表个数在8左右徘徊,就会频繁进行链表转红黑树,红黑树转链表的操作。
题目二、为什么扩容时还要求数组大小大于64?
这里不仅仅判断链表个数大于等于 8,还判断了数组大小,数组容量小于 64 没有立即转化的原因,猜测主要是因为红黑树占用的空间比链表大很多,转化也比较耗时,所以数组容量小的情况下冲突严重,我们可以先尝试扩容,看看能否通过扩容来解决冲突的问题。
二、初始化HashMap对象
/**
* 函数使用原型
*/
Map<String,Integer> map = new HashMap<String,Integer>();
/**
* 源码分析:主要是HashMap的构造函数 = 4个
* 仅贴出关于HashMap构造函数的源码
*/
public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable{
// 省略上节阐述的参数
/**
* 构造函数1:默认构造函数(无参)
* 加载因子 & 容量 = 默认 = 0.75、16
*/
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR;
}
/**
* 构造函数2:指定“容量大小”的构造函数
* 加载因子 = 默认 = 0.75 、容量 = 指定大小
*/
public HashMap(int initialCapacity) {
// 实际上是调用指定“容量大小”和“加载因子”的构造函数
// 只是在传入的加载因子参数 = 默认加载因子
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
/**
* 构造函数3:指定“容量大小”和“加载因子”的构造函数
* 加载因子 & 容量 = 自己指定
*/
public HashMap(int initialCapacity, float loadFactor) {
// 指定初始容量必须非负,否则报错
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
// HashMap的最大容量只能是MAXIMUM_CAPACITY,哪怕传入的 > 最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 填充比必须为正
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
// 设置 加载因子
this.loadFactor = loadFactor;
// 设置 扩容阈值
// 注:此处不是真正的阈值,仅仅只是将传入的容量大小转化为:>传入容量大小的最小的2的幂,该阈值后面会重新计算
// 下面会详细讲解 ->> 分析1
this.threshold = tableSizeFor(initialCapacity);
}
/**
* 构造函数4:包含“子Map”的构造函数
* 即 构造出来的HashMap包含传入Map的映射关系
* 加载因子 & 容量 = 默认
*/
public HashMap(Map<? extends K, ? extends V> m) {
// 设置容量大小 & 加载因子 = 默认
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 将传入的子Map中的全部元素逐个添加到HashMap中
putMapEntries(m, false);
}
}
/**
* 分析1:tableSizeFor(initialCapacity)
* 作用:将传入的容量大小转化为:>传入容量大小的最小的2的幂
* 与JDK 1.7对比:类似于JDK 1.7 中 inflateTable()里的 roundUpToPowerOf2(toSize)
*/
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
背景:HashMap的对象,包含4个构造函数:
- 默认构造函数(无参);
- 指定容量大小的构造函数;
- 指定容量大小和负载因子的构造函数;
- 包含子Map的构造函数
在构造函数中仅用于初始化容量大小(capacity)、负载因子(load factor),但未真正初始化哈希表,即初始化存储数组table。真正初始话哈希表(初始化数组table)是在第一次添加键值对的时候,即第一次调用put方法时,进行初始化。
JDK1.7:在put方法添加元素时会判断table是否为空,若空,则调用单独的初始化函数inflateTable();
JDK1.8:在put方法添加元素时会判断table是否为空,若空,则调用resize()扩容函数;
构建HashMap实例时有两个重要的参数,会影响其性能:初始大小和负载因子。初始大小用来规定哈希表数组的长度,即桶的个数。负载因子用来表示哈希表元素的填满程度,越大则表示允许填满的元素就越多,哈希表的空间利用率就越高,但是冲突的机会也就增加了。反之,越小则冲突的机会就会越少,但是空间很多就浪费了。
题目一:为什么负载因子是0.75?
扩容时的临界值由【负载因子】和【当前容器的容量大小】来确定。即hashMap.size>=Capactity x loadFactory
负载因子选择0.75主要是在提高空间利用率和减少查询成本的折中下,节点出现在hash桶中遵循泊松分布的情况下,选择0.75。
- 负载因子过高,如1,虽然减少了空间的开销,提高了空间的利用率,但是增加了查询的时间成本;空间效率上去,时间效率下来了。
- 负载因子过低,如0.5,虽然可以减少查询的时间成本,但空间利用率很低,提高了rehash操作的次数。时间效率上去,空间效率下来了。
总的来说,HashMap在负载因子0.75的时候,空间利用率,满足泊松分布,而且避免了相当多的Hash冲突,提升了时间效率。
题目二:为什么数组容量必须是2次幂?
桶的索引计算公式为 i = (n-1) & hash。效果等于与 hash%n 的计算效果,但是位运算比取余运算要高效的多。
如果n为2次幂,那么n-1的低位就全是1,哈希值进行与操作时可以保证低位的值不变,从而保证分布均匀,不会受到与运算对数据的变化影响。
数组取2次幂的时候:
数组不取2次幂的话,会出现重复的数据,而且数组元素分布不均匀,且数组上的某些位置,永远也用不到。
三、向HashMap添加数据
3.1 判断数组是否为空
- jdk1.7:若空,则调用单独的初始化函数inflateTable();
- jdk1.8:若空,则调用resize()函数。
不能空,则计算数据在hashMap的索引位置。
3.2 计算数据在hashMap的索引值
计算要添加数据在HashMap中的桶索引值,可分为以下两步:第一步计算Hash值;第二步计算索引值。
- 第一步计算Hash值
- 先计算哈希码
- 再进行扰动函数操作
- 第二步计算索引值
- 通过hash&(length-1)(效果等同于hash%length计算,但位运算比取余运算要高效的多)
1.计算哈希码
预备知识:计算哈希码 h=key.hashCode(). 根据对象的内存地址,经过特定算法返回一个哈希码。
a.整数
- 整数值当做哈希值
- 比如10的哈希值就是10
public static int hashCode(int value){ return value; }
b.浮点数
- 将存储的二进制格式转为整数值
public static int hashCode(int value){ return floatToIntBits(value); }
c.Long的哈希值
public static int hashCode(int value){ return (int)(value^(value>>>32)); }
d.Double的哈希值
public static int hashCode(int value){ long bits = doubleToLongBits(value); return (int)(bits^(bits>>>32)); }
Long和Double中的>>>和^的作用是?
- 高32bit和低32位混合计算出32bit的哈希值
- 充分利用所有信息计算出哈
e.字符串的哈希值
关于31的探讨?
- 奇质数作为哈希运算中的乘法因子,得到的哈希值效果比较好(分布均匀)
- JVM对于位运算的优化,31*i可优化为(i<<5)-i ,最后选择31是因为速度比较快
2.扰动函数
JDK1.7: 要进行4次位运算 + 5次异或预算
// JDK 1.7实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 4次位运算 + 5次异或运算(9次扰动)
static final int hash(int h) {
h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}
JDK1.8:进行1次位运算+1次异或运算
// JDK 1.8实现:将 键key 转换成 哈希码(hash值)操作 = 使用hashCode() + 1次位运算 + 1次异或运算(2次扰动)
// 1. 取hashCode值: h = key.hashCode()
// 2. 高位参与低位的运算:h ^ (h >>> 16)
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
// a. 当key = null时,hash值 = 0,所以HashMap的key 可为null
// 注:对比HashTable,HashTable对key直接hashCode(),若key为null时,会抛出异常,所以HashTable的key不可为null
// b. 当key ≠ null时,则通过先计算出 key的 hashCode()(记为h),然后 对哈希码进行 扰动处理: 按位 异或(^) 哈希码自身右移16位后的二进制
}
设计原因:
为了效率考虑,进行了缩减。
题目一、为什么不直接采用hashCode()处理的哈希码作为hashMap的下标位置?
计算出来的哈希码可能并不在数组大小范围内,从而导致无法匹配位置的情况。解决方法:哈希码 & (数组长度-1)。
哈希码是32位的,其取值范围为-(2^31) ~ 2^31-1之间。
而哈希表的容量范围最大值为2^30.
题目二、为什么要对哈希码进行二次处理,扰动计算?
为了进一步提高哈希低位的随机性,使得分布更均匀,从而提高对应数组存储下标位置的随机性和均匀性,从而减少hash冲突。
3.3 数据具体在哈希表的存放
JDK1.7 存放数据只需判断数组和链表
JDK1.8 存放数据需多次判断:数组、链表和红黑树
原因:提高查找效率;
JDK1.7在插入数据方式时用的头插法(将原位置的数据后移1位,然后再插入数据到该位置)
JDK1.8在插入数据方式时用的尾插法(直接插入到链表尾部/红黑树)
原因:在多线程并发情况下,头插法会出现链表成环的问题。(当然在多线程情况下,HashMap本就是线程非安全的。)
HashMap
的线程不安全主要体现在以下两个方面:
- 在JDK1.7下,当并发执行扩容操作时环形链和数据丢失的情况;
- 在JDK1.8下,当并发执行put操作时会发生数据覆盖等情况。
3.4 HashMap的扩容机制resize()
resize()函数的使用有2种情况:
- 初始化哈希表;
- 当前数组容量过小,需扩容; (扩容的容量大小会变成原来的2倍,用位运算来加快计算的运行效率)。
/**
* 分析4:resize()
* 该函数有2种使用情况:1.初始化哈希表 2.当前数组容量过小,需扩容
*/
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; // 扩容前的数组(当前数组)
int oldCap = (oldTab == null) ? 0 : oldTab.length; // 扩容前的数组的容量 = 长度
int oldThr = threshold;// 扩容前的数组的阈值
int newCap, newThr = 0;
// 针对情况2:若扩容前的数组容量超过最大值,则不再扩充
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 针对情况2:若无超过最大值,就扩充为原来的2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // 通过右移扩充2倍
}
// 针对情况1:初始化哈希表(采用指定 or 默认值)
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
// 计算新的resize上限
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
// 把每个bucket都移动到新的buckets中
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // 链表优化重hash的代码块
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
// 原索引
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
// 原索引 + oldCap
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
// 原索引放到bucket里
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
// 原索引+oldCap放到bucket里
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
JDK1.7:插入前,判断是否需扩容
JDK1.8:插入结束后,判断是否需扩容
JDK1.7:扩容后存储位置的计算方式:全部按照之前的方法进行重新计算索引
JDK1.8:扩容后存储位置的计算方式:按照扩容后的规律计算(扩容后的位置=原位置or原位置+旧容量)
扩容后,若hash值新增参与运算的位=0,那么元素在扩容后的位置=原始位置;
扩容后,若hash值新增参与运算的位=1,那么元素在扩容后的位置 =原始位置+扩容后的旧位置;
3.5 从HashMap中获取数据
/**
* 函数原型
* 作用:根据键key,向HashMap获取对应的值
*/
map.get(key);
/**
* 源码分析
*/
public V get(Object key) {
Node<K,V> e;
// 1. 计算需获取数据的hash值
// 2. 通过getNode()获取所查询的数据 ->>分析1
// 3. 获取后,判断数据是否为空
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
/**
* 分析1:getNode(hash(key), key))
*/
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
// 1. 计算存放在数组table中的位置
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 4. 通过该函数,依次在数组、红黑树、链表中查找(通过equals()判断)
// a. 先在数组中找,若存在,则直接返回
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// b. 若数组中没有,则到红黑树中寻找
if ((e = first.next) != null) {
// 在树中get
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// c. 若红黑树中也没有,则通过遍历,到链表中寻找
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}