Ollama和OpenAI Compatible对比

Ollama和OpenAI Compatible对比

🧑‍💻 User

Ollama 和 OpenAi Compatible 且别


🤖 Assistant

这两张图片展示了两种不同的API提供商设置界面:OpenAI CompatibleOllama。它们之间的主要区别体现在以下几个方面:

Ollama 和 OpenAI Compatible 的区别:

  1. API 提供商类型 (API Provider)

    • OpenAI Compatible: 表示这个配置是用于连接一个与OpenAI API接口兼容的服务。这意味着它可以是OpenAI官方的API,也可以是其他提供了类似OpenAI API接口的第三方服务(例如,一些云服务商提供的托管模型、或一些开源项目如LocalAI)。
    • Ollama: 专门用于连接Ollama服务。Ollama是一个开源项目,允许用户在本地机器上运行大型语言模型(LLMs)。
  2. 基础URL (Base URL / Use custom base URL)

    • OpenAI Compatible: 有一个明确的“Base URL”字段,例如 https://api.siliconflow.cn/v1。这通常是API服务的入口点。
    • Ollama: 有一个“Use custom base URL”的选项,勾选后可以输入自定义的URL,默认或常见的是 http://localhost:11434/api/chat。这表明Ollama通常在本地运行,并通过本地网络端口提供服务。
  3. API 密钥 (API Key)

    • OpenAI Compatible: 有一个“OpenAI Compatible API Key”字段,用于身份验证。通常API密钥是访问商业或受限API所必需的。
    • Ollama: 没有API密钥字段。由于Ollama主要用于本地运行模型,通常不需要API密钥进行身份验证。
  4. 模型识别 (Model ID / Model)

    • OpenAI Compatible: 使用“Model ID”字段,例如 Qwen/Qwen3-Coder-30B-A3B-Instruct。这通常是一个特定的模型名称或路径,由API提供商定义。
    • Ollama: 使用“Model”字段,例如 llama3.1。这通常是Ollama在本地下载和管理模型时使用的简短名称。
  5. 自定义 Headers (Custom Headers)

    • OpenAI Compatible: 提供“Custom Headers”选项,允许用户添加自定义的HTTP请求头。这在某些特定的API集成场景中可能有用,例如传递额外认证信息或特定请求参数。
    • Ollama: 没有“Custom Headers”选项。Ollama的API通常更简单直接。
  6. Azure API 版本 (Set Azure API version)

    • OpenAI Compatible: 有一个“Set Azure API version”复选框。这表明这个接口可能也支持连接Azure OpenAI服务,Azure OpenAI需要指定API版本。
    • Ollama: 没有此选项,因为它不与Azure OpenAI直接相关。
  7. 模型配置细节 (MODEL CONFIGURATION)

    • OpenAI Compatible: 提供了更详细的配置选项,如:
      • Supports Images (支持图片输入)
      • Supports browser use (可能指支持浏览器环境下的使用或某些浏览器相关的特性)
      • Enable R1 messages format (一个特定的消息格式选项)
      • Context Window Size (上下文窗口大小,例如128000 tokens)
      • Max Output Tokens (最大输出令牌数)
      • Input Price / 1M tokensOutput Price / 1M tokens (用于成本计算的每百万令牌的价格)
      • Temperature (模型输出的随机性/创造性)。
    • Ollama: 提供的模型配置选项相对较少:
      • Model Context Window (模型上下文窗口大小,例如32768)
      • Request Timeout (ms) (请求超时时间)。
      • 没有明确的图片支持、浏览器使用、价格或温度设置选项在UI中直接可见。
  8. 本地运行提示 (Local Run Hint)

    • Ollama: 界面下方明确提示“Ollama allows you to run models locally on your computer. For instructions on how to get started, see their quickstart guide.” 这进一步强调了Ollama是用于本地模型部署的。
  9. 模型兼容性提示 (Model Compatibility Hint)

    • 两者都有类似提示: “(Note: Cline uses complex prompts and works best with Claude models. Less capable models may not work as expected.)” 这条提示与API提供商本身无关,而是与使用此界面的应用程序(“Cline”)的内部逻辑和提示工程有关,它建议对于复杂提示,Claude模型可能表现更好。

总结:

  • OpenAI Compatible 接口设计更通用,可以连接各种兼容OpenAI API的服务,包括商业API,因此需要API密钥、支持更多高级配置和成本追踪。
  • Ollama 接口设计更专注于在本地运行大型语言模型,配置项更简洁,无需API密钥,主要关注本地服务地址和基本模型参数。

简而言之,OpenAI Compatible更像是“云端或托管服务”的连接器,而Ollama更像是“本地部署模型”的连接器。


🧑‍💻 User

Ollama 部署huggingface 上的模型 如何部署 Ollama Modelfile 的作用


🤖 Assistant

要在Ollama上部署Hugging Face上的模型,通常你需要做以下几件事:

  1. 确认模型格式兼容性: Ollama主要支持GGUF格式的模型。许多Hugging Face上的模型最初是PyTorch、TensorFlow或JAX格式的。你需要找到这些模型对应的GGUF版本,或者自己将它们转换成GGUF格式。
  2. 获取GGUF模型文件: 在Hugging Face Model Hub上,许多流行的模型(如Llama系列、Mistral、Qwen等)都会有用户或社区成员上传的GGUF量化版本。你可以通过在模型页面搜索 “GGUF” 或者查看 “Files and versions” 选项卡来找到它们。例如,对于Llama-2-7B-Chat-GGUF模型,你可以直接下载.gguf文件。
  3. 创建或编辑Ollama Modelfile: 这是将GGUF文件封装成Ollama可识别模型的关键步骤。

Ollama Modelfile 的作用

Modelfile是Ollama用来定义如何运行一个模型的文件。它类似于一个“配方”或者“配置文件”,告诉Ollama以下信息:

  • 模型的基础文件: 指向实际的GGUF模型文件。
  • 模型的能力和行为: 设置模型的一些默认参数,如温度、上下文窗口大小、系统提示等。
  • 如何与模型交互: 定义模型是用于文本生成、代码生成还是其他任务。

一个典型的Modelfile包含以下指令:

  • FROM: 这是最重要的指令,用于指定Ollama将加载的GGUF模型文件。这个文件可以是本地路径,也可以是Ollama内置的模型(如果你不是从Hugging Face下载的GGUF)。
  • PARAMETER: 用于设置模型的运行时参数,例如:
    • temperature: 控制输出的随机性(0到1之间,默认为0.8)。
    • top_k: 限制取样时考虑的词汇数量。
    • top_p: 限制取样时考虑的累积概率。
    • num_ctx: 上下文窗口大小(tokens)。
    • num_predict: 最大生成tokens数。
    • stop: 停止词序列,模型生成到这些词时会停止。
  • TEMPLATE: 定义模型的对话模板。大型语言模型通常需要特定的格式来理解用户输入和生成响应,例如[INST][/INST]这样的指令或USER:, ASSISTANT:等。Modelfile允许你为特定的模型定义这些模板,以便Ollama可以正确地格式化输入和输出。
  • SYSTEM: 设置模型的默认系统提示,这会在每次对话开始时发送给模型,用于设定其角色、行为或基本指令。
  • ADAPTER: 用于指定一个 LoRA (Low-Rank Adaptation) 适配器模型,将其与基础模型一起加载。
示例 Modelfile (部署 Hugging Face GGUF 模型)

假设你从Hugging Face下载了一个名为 qwen2-7b-instruct-q4_k_m.gguf 的Qwen2 GGUF模型文件,并将其放在 /path/to/your/models/ 目录下。

  1. 创建 Modelfile:
    创建一个名为 Modelfile 的文件(没有扩展名),内容如下:

    FROM /path/to/your/models/qwen2-7b-instruct-q4_k_m.gguf
    
    # 可选:设置模型参数
    PARAMETER temperature 0.7
    PARAMETER top_k 40
    PARAMETER top_p 0.9
    PARAMETER num_ctx 8192 # 根据你的模型实际上下文窗口调整
    PARAMETER stop "<|im_end|>" # Qwen2的停止符
    
    # 可选:定义对话模板(非常重要,特别是对于Instruct模型)
    # Qwen2 Instruct模型的对话格式通常是这样:
    # <|im_start|>system
    # {system_message}<|im_end|>
    # <|im_start|>user
    # {prompt}<|im_end|>
    # <|im_start|>assistant
    TEMPLATE """{{ if .System }}<|im_start|>system
    {{ .System }}<|im_end|>
    {{ end }}{{ if .Prompt }}<|im_start|>user
    {{ .Prompt }}<|im_end|>
    {{ end }}<|im_start|>assistant
    """
    
    # 可选:设置默认系统提示
    SYSTEM "You are a helpful AI assistant."
    

    注意:

    • FROM 后面跟着的是你下载的GGUF文件的绝对路径或相对路径
    • TEMPLATESYSTEM 是非常关键的,它们需要与你所使用的Hugging Face模型的训练格式(指令格式)严格匹配。如果格式不匹配,模型可能会给出不佳的响应。你通常可以在Hugging Face模型页面的“How to use”或“Prompt Format”部分找到这些信息。
  2. 创建 Ollama 模型:
    打开终端,导航到你保存 Modelfile 的目录,然后运行以下命令:

    ollama create my-qwen2-model -f ./Modelfile
    
    • my-qwen2-model 是你希望在Ollama中使用的模型名称。
    • -f ./Modelfile 指定了你的Modelfile的路径。

    Ollama会读取Modelfile,并将GGUF文件与这些配置关联起来,打包成一个新的Ollama模型。

  3. 运行模型:
    创建成功后,你就可以像运行任何Ollama内置模型一样使用它了:

    ollama run my-qwen2-model
    

    或者通过Ollama API调用它。

总结 Modelfile 的重要性:

Modelfile是Ollama的“模型定义蓝图”。它不仅仅告诉Ollama在哪里找到模型的二进制文件(GGUF),更重要的是,它定义了模型在Ollama生态系统中的行为和交互方式。特别是对于来自Hugging Face的不同模型,它们可能具有独特的对话模板、停止序列和推荐参数,Modelfile就是用来定制这些,确保模型在Ollama中能够被正确、有效地使用的工具。


🧑‍💻 User

深入学习 Modelfile 的配置 (部署 Hugging Face GGUF 模型)


🤖 Assistant

好的,我们来深入学习 Modelfile 的配置,特别是针对部署 Hugging Face GGUF 模型时需要注意的细节。

Modelfile 的核心概念

Modelfile 是 Ollama 定义和配置模型的蓝图。它允许你将一个 GGUF 文件(模型的核心)与一系列行为参数和交互规则(如提示模板、系统消息、超参数等)结合起来,形成一个在 Ollama 中可用的完整模型。

为什么它如此重要?
Hugging Face 上的模型千差万别,即使是同一种架构(如 Llama2),不同开发者微调后也可能使用不同的对话格式或推荐参数。Modelfile 的作用就是抹平这些差异,让 Ollama 知道如何正确地与你的特定模型交互。

Modelfile 指令详解

以下是 Modelfile 中常用的指令及其在部署 Hugging Face GGUF 模型时的具体应用:

1. FROM /path/to/your/model.gguf
  • 作用: 指定基础 GGUF 模型文件的路径。这是 Modelfile 中最基本且必不可少的指令。
  • Hugging Face GGUF 应用:
    • 首先,你需要从 Hugging Face Model Hub 下载你想要部署的模型的 GGUF 版本。通常在模型的 “Files and versions” 标签页中查找 .gguf 扩展名的文件。
    • 下载后,将文件保存在你的本地文件系统上。
    • FROM 后面接的就是这个 GGUF 文件的完整路径(绝对路径或相对于 Modelfile 的路径)。
    • 示例: FROM ./models/my-llama-2-7b-chat.ggufFROM /home/user/llms/mistral-7b-instruct-v0.2.Q5_K_M.gguf
2. PARAMETER <key> <value>
  • 作用: 设置模型的运行时参数。这些参数会影响模型的生成行为和性能。
  • Hugging Face GGUF 应用: Hugging Face 模型页面通常会提供作者推荐的参数设置(例如,在 README.md 或模型卡中)。根据这些推荐来配置。
    • temperature <float> (默认为 0.8): 控制生成文本的随机性和创造性。
      • 0.0:确定性输出(每次输入相同,输出相同)。
      • 0.7 - 0.9:常见范围,用于平衡创造性和连贯性。
      • 对于代码生成、事实问答等任务,可能需要更低的 temperature (接近 0.0) 以确保准确性。
      • 对于创意写作、头脑风暴,可以适当提高 temperature
    • top_k <int> (默认为 40): 限制生成下一个词时考虑的词汇数量。
      • 模型会从概率最高的 top_k 个词中进行采样。
      • 较小的 top_k 增加确定性,减少多样性。
    • top_p <float> (默认为 0.9): 限制生成下一个词时考虑的累积概率。
      • 模型会从累积概率达到 top_p 的最小词汇集合中进行采样。
      • top_k 结合使用,控制生成的多样性。
    • num_ctx <int> (默认为 2048): 设置模型的上下文窗口大小(以 token 为单位)。
      • 至关重要! 你的 GGUF 模型本身会有一个最大的上下文窗口(例如 4096, 8192, 32768, 甚至 128000)。你应该将 num_ctx 设置为小于或等于模型实际支持的最大上下文窗口,并根据你的硬件(RAM)能力进行调整。
      • 设置过大但模型不支持或硬件不足会导致错误或性能下降。
      • Hugging Face 模型卡中通常会标明 context_lengthmax_position_embeddings
    • num_predict <int> (默认为 128): 每次生成响应时最大输出的 token 数量。
      • 根据你的应用需求调整。如果需要长篇大论,增加此值;如果只需要简短回答,可以减少。
    • repeat_last_n <int> (默认为 64): 检查重复的最近 n 个 token。
    • repeat_penalty <float> (默认为 1.1): 惩罚重复的 token,防止模型陷入循环。
    • mirostat <int> (默认为 0): 是否使用 Mirostat 采样算法。
      • 0: 不使用。
      • 1: 使用 Mirostat V1。
      • 2: 使用 Mirostat V2。
    • mirostat_eta <float> (默认为 0.1): Mirostat 算法的速率参数。
    • mirostat_tau <float> (默认为 5.0): Mirostat 算法的目标信息熵。
    • stop <string...>: 定义模型生成时遇到的停止序列。
      • 非常重要! 许多指令微调模型在完成响应后会生成特定的停止符(如 <|im_end|>, </s>, [INST], \nUser: 等)。正确设置停止符可以防止模型继续生成不相关的文本或对话轮次。
      • 你通常可以在 Hugging Face 模型卡的“Usage”或“Prompt Format”部分找到这些停止符。
      • 可以定义多个停止符,每个停止符一行。
      • 示例:
        PARAMETER stop "<|im_end|>"
        PARAMETER stop "</s>"
        PARAMETER stop "<|eot_id|>" # Llama3 常用
        
3. TEMPLATE """..."""
  • 作用: 定义模型的对话模板。这告诉 Ollama 如何格式化用户输入、系统消息以及历史对话,以便模型能够正确理解。
  • Hugging Face GGUF 应用: 这是部署指令微调模型(Instruct models)时最关键的配置之一。
    • 不同的模型(如 Llama2-Chat, Mistral-Instruct, Qwen-Instruct, Llama3-Instruct 等)都有其独特的对话格式。如果不匹配,模型可能会行为异常,生成垃圾信息,或者完全不理解你的指令。
    • 你必须参考 Hugging Face 模型页面(通常在 README.mdHow to use 部分)提供的“Prompt Format”或“Chat Template”来编写。
    • TEMPLATE 中使用 Go 模板语法,支持条件语句和变量:
      • {{ .System }}: 插入系统消息。
      • {{ .Prompt }}: 插入当前用户提示。
      • {{ .Messages }}: 包含整个对话历史(用户和助手的消息)。通常与 range 循环结合使用。
    • 示例 (Llama 2 Chat Template):
      # Llama 2 模型的对话模板
      TEMPLATE """[INST] <<SYS>>
      {{ .System }}
      <</SYS>>
      
      {{ .Prompt }} [/INST]"""
      
    • 示例 (Mistral / Mixtral Instruct Template):
      # Mistral / Mixtral instruct 模型的对话模板
      TEMPLATE """{{ if .System }}<|im_start|>system
      {{ .System }}<|im_end|>
      {{ end }}{{ if .Prompt }}<|im_start|>user
      {{ .Prompt }}<|im_end|>
      {{ end }}<|im_start|>assistant
      """
      
      注意: 这里的 Mistral 模板是基于它们的微调模型常用的 chatml 格式,与 [INST] 格式不同。务必确认你下载的 GGUF 模型的微调方式。
    • 示例 (Llama 3 Instruct Template - 推荐): Llama 3 使用新的格式,通常推荐使用 {{ if .System }}...{{ end }} 结构。
      TEMPLATE """{{ if .System }}<|begin_of_text|><|start_header_id|>system<|end_header_id|>
      
      {{ .System }}<|eot_id|>{{ end }}<|start_header_id|>user<|end_header_id|>
      
      {{ .Prompt }}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
      
      """
      
    • 多轮对话模板 (针对 {{ .Messages }}):
      如果你希望模型支持多轮对话并正确地处理历史消息,你需要更复杂的 TEMPLATE,它会遍历 {{ .Messages }}
      # 这是一个通用但可能需要根据具体模型调整的多轮对话模板示例
      TEMPLATE """{{ if .System }}<|im_start|>system
      {{ .System }}<|im_end|>
      {{ end }}{{ range .Messages }}{{ if eq .Role "user" }}<|im_start|>user
      {{ .Content }}<|im_end|>
      {{ else if eq .Role "assistant" }}<|im_start|>assistant
      {{ .Content }}<|im_end|>
      {{ end }}{{ end }}{{ if .Prompt }}<|im_start|>user
      {{ .Prompt }}<|im_end|>
      {{ end }}<|im_start|>assistant
      """
      
      重点: 对于多轮对话,确保你的模板包含了所有角色(user, assistant)的正确前缀和后缀,以及消息之间的分隔符。
4. SYSTEM """..."""
  • 作用: 定义模型的默认系统提示(System Prompt)。这个提示会在每次对话开始时(或当 TEMPLATE 中包含 {{ .System }}System 变量被设置时)发送给模型,用于设定其角色、个性或遵守的规则。
  • Hugging Face GGUF 应用: 许多指令微调模型对系统提示很敏感。
    • 可以用来指示模型扮演特定角色(例如,“你是一个乐于助人的AI助手”)。
    • 设置行为准则(例如,“你的回答应该简洁明了,不要胡说八道”)。
    • 示例: SYSTEM """You are a polite and helpful AI assistant."""
5. ADAPTER <path/to/adapter.safetensors>
  • 作用: 加载 LoRA (Low-Rank Adaptation) 适配器模型。LoRA 是一种微调技术,只训练模型的一小部分参数,从而实现更高效、更小的模型更新。
  • Hugging Face GGUF 应用: 较少直接应用于 GGUF 文件,因为 GGUF 文件通常已经是微调后的完整模型或基础模型。但如果你有为特定 GGUF 模型训练的 LoRA 适配器(通常是 .safetensors.bin 格式),你可以在这里加载它。这对于在 Ollama 中进一步定制模型行为非常有用。
  • 示例: ADAPTER ./lora/my-custom-adapter.safetensors
6. LICENSE """...""" (了解即可,不常用)
  • 作用: 在模型元数据中包含许可证信息。
  • 应用: 主要用于记录和遵守模型的许可协议。
7. MESSAGE <role> """...""" (了解即可,不常用)
  • 作用: 在模型元数据中包含示例对话消息。
  • 应用: 用于提供模型使用示例,而不是实际影响模型运行。

部署 Hugging Face GGUF 模型的步骤和注意事项:

  1. 选择并下载 GGUF 模型:

    • 在 Hugging Face Model Hub 上,搜索你感兴趣的模型。
    • 进入模型页面,点击 “Files and versions” 标签。
    • 寻找 .gguf 扩展名的文件。通常会有不同量化级别(如 Q4_K_M, Q5_K_S 等),选择适合你硬件(尤其是 RAM)的版本。量化程度越高,文件越小,运行越快,但可能精度略有下降。
    • 下载选定的 GGUF 文件。
  2. 创建 Modelfile:

    • 在一个新的文本文件中编写你的 Modelfile
    • 务必确认 FROM 指向正确的 GGUF 文件路径。
    • 最最重要的是,根据 Hugging Face 模型卡的说明,精确复制或调整 TEMPLATESTOP 参数。 这一点决定了模型能否正确工作。如果模型是指令微调的,它的对话格式是固定的。
    • 设置 num_ctx 以匹配模型的上下文窗口大小和你硬件的能力。
    • 根据需求调整其他 PARAMETER
  3. 使用 ollama create 命令:

    • Modelfile 和下载的 GGUF 文件放在一个方便管理的目录中。
    • 打开终端,导航到该目录。
    • 运行命令:ollama create <your-model-name> -f Modelfile
      • <your-model-name> 是你希望在 Ollama 中看到的模型名称(例如 my-custom-qwen2)。
      • -f Modelfile 指定了 Modelfile 的路径。
  4. 测试模型:

    • 创建成功后,运行:ollama run <your-model-name>
    • 输入一些提示,检查模型的响应是否符合预期。如果模型行为异常(例如,回复乱码,不遵循指令),很可能是 TEMPLATESTOP 参数不正确。

常见问题与排查:

  • 模型回复乱码/不符合预期:
    • 最常见原因:TEMPLATE 不匹配。 仔细核对 Hugging Face 模型卡中的对话格式,并调整 Modelfile 中的 TEMPLATE
    • STOP 符不正确。模型可能没有在正确的位置停止生成。
    • temperature 设置过高,导致输出过于随机。
  • 模型加载失败/内存不足:
    • num_ctx 设置过大,超出了模型或你系统内存的限制。尝试减小 num_ctx
    • GGUF 文件量化级别太高(文件太大),尝试下载更低量化级别(例如 Q4_K_M 而不是 Q8_0)的版本。
  • FROM 路径错误: 检查 GGUF 文件的路径是否正确。

通过深入理解这些 Modelfile 的配置指令及其与 Hugging Face 模型特点的对应关系,你将能够更有效地在 Ollama 上部署和运行各种 GGUF 模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值