Ollama和OpenAI Compatible对比
🧑💻 User
Ollama 和 OpenAi Compatible 且别
🤖 Assistant
这两张图片展示了两种不同的API提供商设置界面:OpenAI Compatible 和 Ollama。它们之间的主要区别体现在以下几个方面:
Ollama 和 OpenAI Compatible 的区别:
-
API 提供商类型 (API Provider)
- OpenAI Compatible: 表示这个配置是用于连接一个与OpenAI API接口兼容的服务。这意味着它可以是OpenAI官方的API,也可以是其他提供了类似OpenAI API接口的第三方服务(例如,一些云服务商提供的托管模型、或一些开源项目如LocalAI)。
- Ollama: 专门用于连接Ollama服务。Ollama是一个开源项目,允许用户在本地机器上运行大型语言模型(LLMs)。
-
基础URL (Base URL / Use custom base URL)
- OpenAI Compatible: 有一个明确的“Base URL”字段,例如
https://api.siliconflow.cn/v1
。这通常是API服务的入口点。 - Ollama: 有一个“Use custom base URL”的选项,勾选后可以输入自定义的URL,默认或常见的是
http://localhost:11434/api/chat
。这表明Ollama通常在本地运行,并通过本地网络端口提供服务。
- OpenAI Compatible: 有一个明确的“Base URL”字段,例如
-
API 密钥 (API Key)
- OpenAI Compatible: 有一个“OpenAI Compatible API Key”字段,用于身份验证。通常API密钥是访问商业或受限API所必需的。
- Ollama: 没有API密钥字段。由于Ollama主要用于本地运行模型,通常不需要API密钥进行身份验证。
-
模型识别 (Model ID / Model)
- OpenAI Compatible: 使用“Model ID”字段,例如
Qwen/Qwen3-Coder-30B-A3B-Instruct
。这通常是一个特定的模型名称或路径,由API提供商定义。 - Ollama: 使用“Model”字段,例如
llama3.1
。这通常是Ollama在本地下载和管理模型时使用的简短名称。
- OpenAI Compatible: 使用“Model ID”字段,例如
-
自定义 Headers (Custom Headers)
- OpenAI Compatible: 提供“Custom Headers”选项,允许用户添加自定义的HTTP请求头。这在某些特定的API集成场景中可能有用,例如传递额外认证信息或特定请求参数。
- Ollama: 没有“Custom Headers”选项。Ollama的API通常更简单直接。
-
Azure API 版本 (Set Azure API version)
- OpenAI Compatible: 有一个“Set Azure API version”复选框。这表明这个接口可能也支持连接Azure OpenAI服务,Azure OpenAI需要指定API版本。
- Ollama: 没有此选项,因为它不与Azure OpenAI直接相关。
-
模型配置细节 (MODEL CONFIGURATION)
- OpenAI Compatible: 提供了更详细的配置选项,如:
Supports Images
(支持图片输入)Supports browser use
(可能指支持浏览器环境下的使用或某些浏览器相关的特性)Enable R1 messages format
(一个特定的消息格式选项)Context Window Size
(上下文窗口大小,例如128000 tokens)Max Output Tokens
(最大输出令牌数)Input Price / 1M tokens
和Output Price / 1M tokens
(用于成本计算的每百万令牌的价格)Temperature
(模型输出的随机性/创造性)。
- Ollama: 提供的模型配置选项相对较少:
Model Context Window
(模型上下文窗口大小,例如32768)Request Timeout (ms)
(请求超时时间)。- 没有明确的图片支持、浏览器使用、价格或温度设置选项在UI中直接可见。
- OpenAI Compatible: 提供了更详细的配置选项,如:
-
本地运行提示 (Local Run Hint)
- Ollama: 界面下方明确提示“Ollama allows you to run models locally on your computer. For instructions on how to get started, see their quickstart guide.” 这进一步强调了Ollama是用于本地模型部署的。
-
模型兼容性提示 (Model Compatibility Hint)
- 两者都有类似提示: “(Note: Cline uses complex prompts and works best with Claude models. Less capable models may not work as expected.)” 这条提示与API提供商本身无关,而是与使用此界面的应用程序(“Cline”)的内部逻辑和提示工程有关,它建议对于复杂提示,Claude模型可能表现更好。
总结:
- OpenAI Compatible 接口设计更通用,可以连接各种兼容OpenAI API的服务,包括商业API,因此需要API密钥、支持更多高级配置和成本追踪。
- Ollama 接口设计更专注于在本地运行大型语言模型,配置项更简洁,无需API密钥,主要关注本地服务地址和基本模型参数。
简而言之,OpenAI Compatible更像是“云端或托管服务”的连接器,而Ollama更像是“本地部署模型”的连接器。
🧑💻 User
Ollama 部署huggingface 上的模型 如何部署 Ollama Modelfile 的作用
🤖 Assistant
要在Ollama上部署Hugging Face上的模型,通常你需要做以下几件事:
- 确认模型格式兼容性: Ollama主要支持GGUF格式的模型。许多Hugging Face上的模型最初是PyTorch、TensorFlow或JAX格式的。你需要找到这些模型对应的GGUF版本,或者自己将它们转换成GGUF格式。
- 获取GGUF模型文件: 在Hugging Face Model Hub上,许多流行的模型(如Llama系列、Mistral、Qwen等)都会有用户或社区成员上传的GGUF量化版本。你可以通过在模型页面搜索 “GGUF” 或者查看 “Files and versions” 选项卡来找到它们。例如,对于
Llama-2-7B-Chat-GGUF
模型,你可以直接下载.gguf
文件。 - 创建或编辑Ollama Modelfile: 这是将GGUF文件封装成Ollama可识别模型的关键步骤。
Ollama Modelfile 的作用
Modelfile
是Ollama用来定义如何运行一个模型的文件。它类似于一个“配方”或者“配置文件”,告诉Ollama以下信息:
- 模型的基础文件: 指向实际的GGUF模型文件。
- 模型的能力和行为: 设置模型的一些默认参数,如温度、上下文窗口大小、系统提示等。
- 如何与模型交互: 定义模型是用于文本生成、代码生成还是其他任务。
一个典型的Modelfile
包含以下指令:
FROM
: 这是最重要的指令,用于指定Ollama将加载的GGUF模型文件。这个文件可以是本地路径,也可以是Ollama内置的模型(如果你不是从Hugging Face下载的GGUF)。PARAMETER
: 用于设置模型的运行时参数,例如:temperature
: 控制输出的随机性(0到1之间,默认为0.8)。top_k
: 限制取样时考虑的词汇数量。top_p
: 限制取样时考虑的累积概率。num_ctx
: 上下文窗口大小(tokens)。num_predict
: 最大生成tokens数。stop
: 停止词序列,模型生成到这些词时会停止。
TEMPLATE
: 定义模型的对话模板。大型语言模型通常需要特定的格式来理解用户输入和生成响应,例如[INST]
和[/INST]
这样的指令或USER:
,ASSISTANT:
等。Modelfile允许你为特定的模型定义这些模板,以便Ollama可以正确地格式化输入和输出。SYSTEM
: 设置模型的默认系统提示,这会在每次对话开始时发送给模型,用于设定其角色、行为或基本指令。ADAPTER
: 用于指定一个 LoRA (Low-Rank Adaptation) 适配器模型,将其与基础模型一起加载。
示例 Modelfile (部署 Hugging Face GGUF 模型)
假设你从Hugging Face下载了一个名为 qwen2-7b-instruct-q4_k_m.gguf
的Qwen2 GGUF模型文件,并将其放在 /path/to/your/models/
目录下。
-
创建 Modelfile:
创建一个名为Modelfile
的文件(没有扩展名),内容如下:FROM /path/to/your/models/qwen2-7b-instruct-q4_k_m.gguf # 可选:设置模型参数 PARAMETER temperature 0.7 PARAMETER top_k 40 PARAMETER top_p 0.9 PARAMETER num_ctx 8192 # 根据你的模型实际上下文窗口调整 PARAMETER stop "<|im_end|>" # Qwen2的停止符 # 可选:定义对话模板(非常重要,特别是对于Instruct模型) # Qwen2 Instruct模型的对话格式通常是这样: # <|im_start|>system # {system_message}<|im_end|> # <|im_start|>user # {prompt}<|im_end|> # <|im_start|>assistant TEMPLATE """{{ if .System }}<|im_start|>system {{ .System }}<|im_end|> {{ end }}{{ if .Prompt }}<|im_start|>user {{ .Prompt }}<|im_end|> {{ end }}<|im_start|>assistant """ # 可选:设置默认系统提示 SYSTEM "You are a helpful AI assistant."
注意:
FROM
后面跟着的是你下载的GGUF文件的绝对路径或相对路径。TEMPLATE
和SYSTEM
是非常关键的,它们需要与你所使用的Hugging Face模型的训练格式(指令格式)严格匹配。如果格式不匹配,模型可能会给出不佳的响应。你通常可以在Hugging Face模型页面的“How to use”或“Prompt Format”部分找到这些信息。
-
创建 Ollama 模型:
打开终端,导航到你保存Modelfile
的目录,然后运行以下命令:ollama create my-qwen2-model -f ./Modelfile
my-qwen2-model
是你希望在Ollama中使用的模型名称。-f ./Modelfile
指定了你的Modelfile
的路径。
Ollama会读取
Modelfile
,并将GGUF文件与这些配置关联起来,打包成一个新的Ollama模型。 -
运行模型:
创建成功后,你就可以像运行任何Ollama内置模型一样使用它了:ollama run my-qwen2-model
或者通过Ollama API调用它。
总结 Modelfile 的重要性:
Modelfile
是Ollama的“模型定义蓝图”。它不仅仅告诉Ollama在哪里找到模型的二进制文件(GGUF),更重要的是,它定义了模型在Ollama生态系统中的行为和交互方式。特别是对于来自Hugging Face的不同模型,它们可能具有独特的对话模板、停止序列和推荐参数,Modelfile
就是用来定制这些,确保模型在Ollama中能够被正确、有效地使用的工具。
🧑💻 User
深入学习 Modelfile 的配置 (部署 Hugging Face GGUF 模型)
🤖 Assistant
好的,我们来深入学习 Modelfile
的配置,特别是针对部署 Hugging Face GGUF 模型时需要注意的细节。
Modelfile 的核心概念
Modelfile
是 Ollama 定义和配置模型的蓝图。它允许你将一个 GGUF 文件(模型的核心)与一系列行为参数和交互规则(如提示模板、系统消息、超参数等)结合起来,形成一个在 Ollama 中可用的完整模型。
为什么它如此重要?
Hugging Face 上的模型千差万别,即使是同一种架构(如 Llama2),不同开发者微调后也可能使用不同的对话格式或推荐参数。Modelfile
的作用就是抹平这些差异,让 Ollama 知道如何正确地与你的特定模型交互。
Modelfile 指令详解
以下是 Modelfile
中常用的指令及其在部署 Hugging Face GGUF 模型时的具体应用:
1. FROM /path/to/your/model.gguf
- 作用: 指定基础 GGUF 模型文件的路径。这是
Modelfile
中最基本且必不可少的指令。 - Hugging Face GGUF 应用:
- 首先,你需要从 Hugging Face Model Hub 下载你想要部署的模型的 GGUF 版本。通常在模型的 “Files and versions” 标签页中查找
.gguf
扩展名的文件。 - 下载后,将文件保存在你的本地文件系统上。
FROM
后面接的就是这个 GGUF 文件的完整路径(绝对路径或相对于Modelfile
的路径)。- 示例:
FROM ./models/my-llama-2-7b-chat.gguf
或FROM /home/user/llms/mistral-7b-instruct-v0.2.Q5_K_M.gguf
- 首先,你需要从 Hugging Face Model Hub 下载你想要部署的模型的 GGUF 版本。通常在模型的 “Files and versions” 标签页中查找
2. PARAMETER <key> <value>
- 作用: 设置模型的运行时参数。这些参数会影响模型的生成行为和性能。
- Hugging Face GGUF 应用: Hugging Face 模型页面通常会提供作者推荐的参数设置(例如,在
README.md
或模型卡中)。根据这些推荐来配置。temperature <float>
(默认为 0.8): 控制生成文本的随机性和创造性。0.0
:确定性输出(每次输入相同,输出相同)。0.7 - 0.9
:常见范围,用于平衡创造性和连贯性。- 对于代码生成、事实问答等任务,可能需要更低的
temperature
(接近 0.0) 以确保准确性。 - 对于创意写作、头脑风暴,可以适当提高
temperature
。
top_k <int>
(默认为 40): 限制生成下一个词时考虑的词汇数量。- 模型会从概率最高的
top_k
个词中进行采样。 - 较小的
top_k
增加确定性,减少多样性。
- 模型会从概率最高的
top_p <float>
(默认为 0.9): 限制生成下一个词时考虑的累积概率。- 模型会从累积概率达到
top_p
的最小词汇集合中进行采样。 - 与
top_k
结合使用,控制生成的多样性。
- 模型会从累积概率达到
num_ctx <int>
(默认为 2048): 设置模型的上下文窗口大小(以 token 为单位)。- 至关重要! 你的 GGUF 模型本身会有一个最大的上下文窗口(例如 4096, 8192, 32768, 甚至 128000)。你应该将
num_ctx
设置为小于或等于模型实际支持的最大上下文窗口,并根据你的硬件(RAM)能力进行调整。 - 设置过大但模型不支持或硬件不足会导致错误或性能下降。
- Hugging Face 模型卡中通常会标明
context_length
或max_position_embeddings
。
- 至关重要! 你的 GGUF 模型本身会有一个最大的上下文窗口(例如 4096, 8192, 32768, 甚至 128000)。你应该将
num_predict <int>
(默认为 128): 每次生成响应时最大输出的 token 数量。- 根据你的应用需求调整。如果需要长篇大论,增加此值;如果只需要简短回答,可以减少。
repeat_last_n <int>
(默认为 64): 检查重复的最近n
个 token。repeat_penalty <float>
(默认为 1.1): 惩罚重复的 token,防止模型陷入循环。mirostat <int>
(默认为 0): 是否使用 Mirostat 采样算法。0
: 不使用。1
: 使用 Mirostat V1。2
: 使用 Mirostat V2。
mirostat_eta <float>
(默认为 0.1): Mirostat 算法的速率参数。mirostat_tau <float>
(默认为 5.0): Mirostat 算法的目标信息熵。stop <string...>
: 定义模型生成时遇到的停止序列。- 非常重要! 许多指令微调模型在完成响应后会生成特定的停止符(如
<|im_end|>
,</s>
,[INST]
,\nUser:
等)。正确设置停止符可以防止模型继续生成不相关的文本或对话轮次。 - 你通常可以在 Hugging Face 模型卡的“Usage”或“Prompt Format”部分找到这些停止符。
- 可以定义多个停止符,每个停止符一行。
- 示例:
PARAMETER stop "<|im_end|>" PARAMETER stop "</s>" PARAMETER stop "<|eot_id|>" # Llama3 常用
- 非常重要! 许多指令微调模型在完成响应后会生成特定的停止符(如
3. TEMPLATE """..."""
- 作用: 定义模型的对话模板。这告诉 Ollama 如何格式化用户输入、系统消息以及历史对话,以便模型能够正确理解。
- Hugging Face GGUF 应用: 这是部署指令微调模型(Instruct models)时最关键的配置之一。
- 不同的模型(如 Llama2-Chat, Mistral-Instruct, Qwen-Instruct, Llama3-Instruct 等)都有其独特的对话格式。如果不匹配,模型可能会行为异常,生成垃圾信息,或者完全不理解你的指令。
- 你必须参考 Hugging Face 模型页面(通常在
README.md
或How to use
部分)提供的“Prompt Format”或“Chat Template”来编写。 TEMPLATE
中使用 Go 模板语法,支持条件语句和变量:{{ .System }}
: 插入系统消息。{{ .Prompt }}
: 插入当前用户提示。{{ .Messages }}
: 包含整个对话历史(用户和助手的消息)。通常与range
循环结合使用。
- 示例 (Llama 2 Chat Template):
# Llama 2 模型的对话模板 TEMPLATE """[INST] <<SYS>> {{ .System }} <</SYS>> {{ .Prompt }} [/INST]"""
- 示例 (Mistral / Mixtral Instruct Template):
注意: 这里的# Mistral / Mixtral instruct 模型的对话模板 TEMPLATE """{{ if .System }}<|im_start|>system {{ .System }}<|im_end|> {{ end }}{{ if .Prompt }}<|im_start|>user {{ .Prompt }}<|im_end|> {{ end }}<|im_start|>assistant """
Mistral
模板是基于它们的微调模型常用的chatml
格式,与[INST]
格式不同。务必确认你下载的 GGUF 模型的微调方式。 - 示例 (Llama 3 Instruct Template - 推荐): Llama 3 使用新的格式,通常推荐使用
{{ if .System }}...{{ end }}
结构。TEMPLATE """{{ if .System }}<|begin_of_text|><|start_header_id|>system<|end_header_id|> {{ .System }}<|eot_id|>{{ end }}<|start_header_id|>user<|end_header_id|> {{ .Prompt }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> """
- 多轮对话模板 (针对
{{ .Messages }}
):
如果你希望模型支持多轮对话并正确地处理历史消息,你需要更复杂的TEMPLATE
,它会遍历{{ .Messages }}
。
重点: 对于多轮对话,确保你的模板包含了所有角色(user, assistant)的正确前缀和后缀,以及消息之间的分隔符。# 这是一个通用但可能需要根据具体模型调整的多轮对话模板示例 TEMPLATE """{{ if .System }}<|im_start|>system {{ .System }}<|im_end|> {{ end }}{{ range .Messages }}{{ if eq .Role "user" }}<|im_start|>user {{ .Content }}<|im_end|> {{ else if eq .Role "assistant" }}<|im_start|>assistant {{ .Content }}<|im_end|> {{ end }}{{ end }}{{ if .Prompt }}<|im_start|>user {{ .Prompt }}<|im_end|> {{ end }}<|im_start|>assistant """
4. SYSTEM """..."""
- 作用: 定义模型的默认系统提示(System Prompt)。这个提示会在每次对话开始时(或当
TEMPLATE
中包含{{ .System }}
且System
变量被设置时)发送给模型,用于设定其角色、个性或遵守的规则。 - Hugging Face GGUF 应用: 许多指令微调模型对系统提示很敏感。
- 可以用来指示模型扮演特定角色(例如,“你是一个乐于助人的AI助手”)。
- 设置行为准则(例如,“你的回答应该简洁明了,不要胡说八道”)。
- 示例:
SYSTEM """You are a polite and helpful AI assistant."""
5. ADAPTER <path/to/adapter.safetensors>
- 作用: 加载 LoRA (Low-Rank Adaptation) 适配器模型。LoRA 是一种微调技术,只训练模型的一小部分参数,从而实现更高效、更小的模型更新。
- Hugging Face GGUF 应用: 较少直接应用于 GGUF 文件,因为 GGUF 文件通常已经是微调后的完整模型或基础模型。但如果你有为特定 GGUF 模型训练的 LoRA 适配器(通常是
.safetensors
或.bin
格式),你可以在这里加载它。这对于在 Ollama 中进一步定制模型行为非常有用。 - 示例:
ADAPTER ./lora/my-custom-adapter.safetensors
6. LICENSE """..."""
(了解即可,不常用)
- 作用: 在模型元数据中包含许可证信息。
- 应用: 主要用于记录和遵守模型的许可协议。
7. MESSAGE <role> """..."""
(了解即可,不常用)
- 作用: 在模型元数据中包含示例对话消息。
- 应用: 用于提供模型使用示例,而不是实际影响模型运行。
部署 Hugging Face GGUF 模型的步骤和注意事项:
-
选择并下载 GGUF 模型:
- 在 Hugging Face Model Hub 上,搜索你感兴趣的模型。
- 进入模型页面,点击 “Files and versions” 标签。
- 寻找
.gguf
扩展名的文件。通常会有不同量化级别(如Q4_K_M
,Q5_K_S
等),选择适合你硬件(尤其是 RAM)的版本。量化程度越高,文件越小,运行越快,但可能精度略有下降。 - 下载选定的 GGUF 文件。
-
创建 Modelfile:
- 在一个新的文本文件中编写你的
Modelfile
。 - 务必确认
FROM
指向正确的 GGUF 文件路径。 - 最最重要的是,根据 Hugging Face 模型卡的说明,精确复制或调整
TEMPLATE
和STOP
参数。 这一点决定了模型能否正确工作。如果模型是指令微调的,它的对话格式是固定的。 - 设置
num_ctx
以匹配模型的上下文窗口大小和你硬件的能力。 - 根据需求调整其他
PARAMETER
。
- 在一个新的文本文件中编写你的
-
使用
ollama create
命令:- 将
Modelfile
和下载的 GGUF 文件放在一个方便管理的目录中。 - 打开终端,导航到该目录。
- 运行命令:
ollama create <your-model-name> -f Modelfile
<your-model-name>
是你希望在 Ollama 中看到的模型名称(例如my-custom-qwen2
)。-f Modelfile
指定了Modelfile
的路径。
- 将
-
测试模型:
- 创建成功后,运行:
ollama run <your-model-name>
- 输入一些提示,检查模型的响应是否符合预期。如果模型行为异常(例如,回复乱码,不遵循指令),很可能是
TEMPLATE
或STOP
参数不正确。
- 创建成功后,运行:
常见问题与排查:
- 模型回复乱码/不符合预期:
- 最常见原因:
TEMPLATE
不匹配。 仔细核对 Hugging Face 模型卡中的对话格式,并调整Modelfile
中的TEMPLATE
。 STOP
符不正确。模型可能没有在正确的位置停止生成。temperature
设置过高,导致输出过于随机。
- 最常见原因:
- 模型加载失败/内存不足:
num_ctx
设置过大,超出了模型或你系统内存的限制。尝试减小num_ctx
。- GGUF 文件量化级别太高(文件太大),尝试下载更低量化级别(例如
Q4_K_M
而不是Q8_0
)的版本。
FROM
路径错误: 检查 GGUF 文件的路径是否正确。
通过深入理解这些 Modelfile
的配置指令及其与 Hugging Face 模型特点的对应关系,你将能够更有效地在 Ollama 上部署和运行各种 GGUF 模型。