AI 数字绘画 stable-diffusion 保姆级教程

简介

近段时间来,你可能在不少地方都看到了非常多这样的好看的画。

比如这样的赛博朋克风
yuantu.png

水墨画风格

prompt: a watercolor ink painting of a fallen angel with a broken
halo wielding
a jagged broken blade standing on top of a skyscraper in the style of anti -
art trending on artstation deviantart pinterest detailed realistic hd 8 k high
resolution

油画

prompt: portrait of bob barker playing twister with scarlett johansson, an oil
painting by ross tran and thomas kincade

水彩画

prompt: a girl with lavender hair and black skirt, fairy tale style
background, a beautiful half body illustration,
top lighting,
perfect shadow, soft painting, reduce saturation, leaning towards watercolor,
art by hidari and krenz cushart and wenjun lin and akihiko yoshida

并且在各种平台我们也是随处可见,以下分别为小红书、闲鱼、twitter

yuantu-2.png

这些图都很像是艺术家画的一样,但是他们却不是出自真正的的艺术家之手,而是 AI 艺术家。AI 就像 16 年打败李世石进军 围棋行业一样,开始进军艺术届了。

我们来看看 AI 绘画 发展的比较关键的时间线

  • Disco Diffusion 是发布于 Google Colab 平台的一款利用人工智能深度学习进行数字艺术创作的工具,它是基于 MIT 许可协议的开源工具,可以在 Google Drive 直接运行,也可以部署到本地运行。

Disco Diffusion 有一个弊端,就是速度非常慢,动辄 半个小时起步。

  • Midjourney 是 Disco Diffusion 的原作者 Somnai 所加入的 AI 艺术项目实验室。

Midjourney 对 Disco Diffusion 进行了改进,平均 1 分钟能出图。

  • OpenAI 推出 DALL·E 2, DALL-E 2 实现了更高分辨率和更低延迟,而且还包括了新的功能,如编辑现有图像。

目前还没有按到 DALL·E 2 的体验资格。

一经推出就受到广大网友的喜爱,操作简单,出图快,平均 10-20 秒。

Stable-Diffusion
免费、生成速度又快,每一次生成的效果图就像是开盲盒一样,需要不断尝试打磨,所以大家都疯狂似的开始玩耍,甚至连特斯拉的前人工智能和自动驾驶视觉总监
Andrej Karpathy 都沉迷于此。

stability.ai 却是一个年轻的英国团队

他们的宗旨为 “****AI by the people, for the people” ,****中文翻译的大意为,人们创造 AI,并且 AI
服务于人,除了 stable-diffusion 他们还参与了众多的 AI 项目

今天主要介绍的就是 stable-diffusion 的玩法,官方利用 stable-diffusion 搭建的平台主要是
dreamstudio.ai 听这个名字就感觉很牛,梦幻编辑器(自己取得,勿喷,因为生成的图都很梦幻),你也可以自己使用 colab
来本地运行,下面就来详解介绍这两种方式

使用方式

1.官网注册账号

打开
beta.dreamstudio.ai/ 选择一种注册方式,我这里使用了 Google
账号登录(后面也有相关的教程来教你如何来注册一个 Google 账号),你也可以选择自己的方式。

注册好后,就可以进入到这个界面。

你可以直接在下方输入名词,也可以在打开右侧的设置按钮,里面会更详细的配置。

输入好关键词后,直接点 Dream 按钮,等待 10 秒左右就可以生成图片。

当然这样的生成方式非常的方便,但是是有次数限制的。

可以看到右上角的点数,默认你注册账号会有 200 点点数,每次生成一张默认设置的图片就会消耗一个点数,如果你要生成更多的方式就需要付费了, 10 英镑
1000 点数。

如果你想获得更高精细程度的图片,单次则需要消耗更多的点数。以下是官方给出的价格表:

而且使用这种方式,你生成图片的版权是自动转为为 CC0 1.0,你可以商用或者非商用你生成的图片,但是也会默认成为公共领域的资源。

2.使用 Colab(推荐)

这一种是我比较推荐的方式,因为这种方式你可以几乎无限地使用 Stable
Diffusion,并且由于这种方式是你自己跑模型的方式生成的图片,版权归属于你自己。

Colab 是什么呢?

Colaboratory 简称“Colab”,是 Google Research 团队开发的一款产品。在 Colab
中,任何人都可以通过浏览器编写和执行任意 Python 代码。它尤其适合机器学习、数据分析和教育目的。从技术上来说,Colab 是一种托管式
Jupyter 笔记本服务。用户无需设置,就可以直接使用,同时还能获得 GPU 等计算资源的免费使用权限。 ——
[research.google.com/colaborator…](https://link.juejin.cn/?target=https%3A%2F%2Fblue-sea-697d.quartiers047.workers.dev%3A443%2Fhttps%2Fresearch.google.com%2Fcolaboratory%2Ffaq.html%3Fhl%3Dzh-
CN “https://research.google.com/colaboratory/faq.html?hl=zh-CN”)

由于 Colab 是 Google 的产品,因此你使用前必须要拥有一个 Google 账户 ,如果不知道怎么注册的划到最底下的 Google
账号注册教程。

而我们目前默认使用的是 Hugging face 开源的 colab 示例。

Hugging face 是一家总部位于纽约的聊天机器人初创服务商,开发的应用在青少年中颇受欢迎,在上面存储了大量的模型,而
Stability.ai 的 Stable ****Diffusion 也是开源在上面。

打开链接:
colab.research.google.com/github/hugg…

打开后,点击右上角的连接。

点击确定

等连接上后我们运行第一段脚本,就是查看当前使用的机器。一般是从 K80、T4、P100、V100 中随机分配一个。

我拿到的是一个 Tesla T4 GPU 的机器,这里比较看人品。如果你拿到一个 V100 的一定要发一波炫耀一下。

然后继续跑下面的命令,安装必要的依赖,每次安装完成后,都会显示运行时间以及运行状态。

运行到这一步,会要求你填写一个 huggingface_hub 的 token 链接

来到
huggingface.co/settings/to… 这个页面,如果没有登录默认会调到登录页

注册一个账号后,复制这个 Token 到 Colab 页面

然后会提示你登录成功了,如果提示异常应该是你复制错了,这个时候你得点开秘钥,手动复制一下。

然后接下来我们就开始拉取模型

注意,这里你直接先运行,是会报错了,会显示 403

{“error”:“Access to model CompVis/stable-diffusion-v1-4 is restricted and you
are not in the authorized list. Visit https://huggingface.co/CompVis/stable-
diffusion-v1-4 to ask for access.”}

这是因为你没有去 huggingface 授权访问。

打开
[huggingface.co/CompVis/sta…](https://link.juejin.cn/?target=https%3A%2F%2Fblue-sea-697d.quartiers047.workers.dev%3A443%2Fhttps%2Fhuggingface.co%2FCompVis%2Fstable-
diffusion-v1-4 “https://huggingface.co/CompVis/stable-diffusion-v1-4”)

点击 运行这个仓库,然后再回到 Colab 就可以正常拉取模型了。

最后就到了激动人心的时候了,开始生成图片,运行以下两个步骤,prompt 就是描述,你可以输入任何你想输入的话语。

用官方默认的 prompt 点击运行就会生成一张宇航员骑马的照片(大约 20 秒左右)

nice,这个就是我生成的图片。

以上基础的教程就完成了,后面还可以设置更多丰富的参数。

设置随机种子(先快速生成低质量图片看看效果,然后再调高画质)

调整迭代次数

多列图片

设置宽高

总的来说我个人更加偏好这种方式,因为可以自己 diy,而且可以近乎无限地使用。

最后如果你想不好 prompt 的话,可以参考这个网站
lexica.art/ ,含有大量别人试验好的样子。

3.本地运行

如果你自己有高级显卡,可以自己尝试。

关于版权

确实总的来说,stable-diffusion 并没有特别限制,但是使用图片必须要遵守以下规则:

1.如果你是使用第三方平台,需要遵守第三方平台的一些规定,例如官方的
dreamstudio.ai 你可以自己商业或者非商用,但是默认你得也遵循 CC0 1.0 条约。

2.如果你使用自己本地部署,那么版权归属你自己。

Google 账号注册

首先 emmm,科学 xx,懂得都懂

打开
[accounts.google.com/v3/signin/i…](https://link.juejin.cn/?target=https%3A%2F%2Fblue-sea-697d.quartiers047.workers.dev%3A443%2Fhttps%2Faccounts.google.com%2Fv3%2Fsignin%2Fidentifier%3Fdsh%3DS-989160527%253A1661836665075766%26continue%3Dhttps%253A%252F%252Fwww.google.com%252F%26ec%3DGAZAmgQ%26hl%3Dzh-
CN%26passive%3Dtrue%26flowName%3DGlifWebSignIn%26flowEntry%3DServiceLogin%26ifkv%3DAQN2RmWH2zA7GGOXiR2mIL7T6SGoXLDpEOZ3gEGnQQfuG7ZguLJmi39jsX2U4YORUfFpDKLqAYNy
“https://accounts.google.com/v3/signin/identifier?dsh=S-989160527%3A1661836665075766&continue=https%3A%2F%2Fblue-sea-697d.quartiers047.workers.dev%3A443%2Fhttps%2Fwww.google.com%2F&ec=GAZAmgQ&hl=zh-
CN&passive=true&flowName=GlifWebSignIn&flowEntry=ServiceLogin&ifkv=AQN2RmWH2zA7GGOXiR2mIL7T6SGoXLDpEOZ3gEGnQQfuG7ZguLJmi39jsX2U4YORUfFpDKLqAYNy”)

点击创建账号 —— 个人用途

填写基本的个人信息

填写手机号和年月信息

然后手机收到一个验证码,点击验证,打工搞成

然后点击跳过

同意协议,大功告成!


放一波我最近生成的图

image.png

image.png
AI绘画SD整合包、各种模型插件、提示词、GPT人工智能学习资料都已经打包好放在网盘中了,有需要的小伙伴文末扫码自行获取。

目前 ControlNet 已经更新到 1.1 版本,相较于 1.0 版本,ControlNet1.1 新增了更多的预处理器和模型,每种模型对应不同的采集方式,再对应不同的应用场景,每种应用场景又有不同的变现空间

我花了一周时间彻底把ControlNet1.1的14种模型研究了一遍,跑了一次全流程,终于将它完整下载好整理成网盘资源。

其总共11 个生产就绪模型、2 个实验模型和 1 个未完成模型,现在就分享给大家,点击下方卡片免费领取。

img

1. 线稿上色

**方法:**通过 ControlNet 边缘检测模型或线稿模型提取线稿(可提取参考图片线稿,或者手绘线稿),再根据提示词和风格模型对图像进行着色和风格化。

**应用模型:**Canny、SoftEdge、Lineart。

Canny 示例:(保留结构,再进行着色和风格化)

img

2. 涂鸦成图

方法:通过 ControlNet 的 Scribble 模型提取涂鸦图(可提取参考图涂鸦,或者手绘涂鸦图),再根据提示词和风格模型对图像进行着色和风格化。

应用模型:Scribble。

Scribble 比 Canny、SoftEdge 和 Lineart 的自由发挥度要更高,也可以用于对手绘稿进行着色和风格处理。Scribble 的预处理器有三种模式:Scribble_hed,Scribble_pidinet,Scribble_Xdog,对比如下,可以看到 Scribble_Xdog 的处理细节更为丰富:

img

Scribble 参考图提取示例(保留大致结构,再进行着色和风格化):

img

3. 建筑/室内设计

**方法:**通过 ControlNet 的 MLSD 模型提取建筑的线条结构和几何形状,构建出建筑线框(可提取参考图线条,或者手绘线条),再配合提示词和建筑/室内设计风格模型来生成图像。

**应用模型:**MLSD。

MLSD 示例:(毛坯变精装)

img

这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!

4. 颜色控制画面

**方法:**通过 ControlNet 的 Segmentation 语义分割模型,标注画面中的不同区块颜色和结构(不同颜色代表不同类型对象),从而控制画面的构图和内容。

**应用模型:**Seg。

Seg 示例:(提取参考图内容和结构,再进行着色和风格化)

img

如果还想在车前面加一个人,只需在 Seg 预处理图上对应人物色值,添加人物色块再生成图像即可。

img

5. 背景替换

**方法:**在 img2img 图生图模式中,通过 ControlNet 的 Depth_leres 模型中的 remove background 功能移除背景,再通过提示词更换想要的背景。

**应用模型:**Depth,预处理器 Depth_leres。

**要点:**如果想要比较完美的替换背景,可以在图生图的 Inpaint 模式中,对需要保留的图片内容添加蒙版,remove background 值可以设置在 70-80%。

Depth_leres 示例:(将原图背景替换为办公室背景)

img

6. 图片指令

**方法:**通过 ControlNet 的 Pix2Pix 模型(ip2p),可以对图片进行指令式变换。

应用模型:ip2p,预处理器选择 none。

**要点:**采用指令式提示词(make Y into X),如下图示例中的 make it snow,让非洲草原下雪。

Pix2Pix 示例:(让非洲草原下雪)

img

7. 风格迁移

**方法:**通过 ControlNet 的 Shuffle 模型提取出参考图的风格,再配合提示词将风格迁移到生成图上。

**应用模型:**Shuffle。

Shuffle 示例:(根据魔兽道具风格,重新生成一个宝箱道具)

img

8. 色彩继承

**方法:**通过 ControlNet 的 t2iaColor 模型提取出参考图的色彩分布情况,再配合提示词和风格模型将色彩应用到生成图上。

**应用模型:**Color。

Color 示例:(把参考图色彩分布应用到生成图上)

img

这份完整版的ControlNet 1.1模型我已经打包好,需要的点击下方插件,即可前往免费领取!

这里就简单说几种应用:

1. 人物和背景分别控制

2. 三维重建

3. 更精准的图片风格化

4. 更精准的图片局部重绘

以上就是本教程的全部内容了,重点介绍了controlnet模型功能实用,当然还有一些小众的模型在本次教程中没有出现,目前controlnet模型确实还挺多的,所以重点放在了官方发布的几个模型上。

同时大家可能都想学习AI绘画技术,也想通过这项技能真正赚到钱,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学,因为自身做副业需要,我这边整理了全套的Stable Diffusion入门知识点资料,大家有需要可以直接点击下边卡片获取,希望能够真正帮助到大家。

请添加图片描述

img

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值