手写数字特征空间分布分析
前言:此篇针对一部分环境配置失败读者。
上篇:《模式识别与智能计算》—MATLAB技术实现 软件配置
光盘内容数据
下载:《模式识别与智能计算》MATLAB技术实现(光盘文件)之后,可以在 手写数字分类文件夹内找到templet.mat
数据。
软件选择0类别对应templet中的pattern(1).feature;
使用软件查询
MATLAB打开templet.mat
利用软件进行样本特征分析
如图所示,打开样本分布:
类别0的分布如下:
利用书中代码进行样本特征分析
先加载template.mat
代码如下:
x=pattern(1).feature;
for i = 1:5
m(i,:)=sum(x((i-1)*5+1:(i-1)*5+5,:)); %特征压缩从25到5维
end
dsig_cov=cov(m'); %求mixedsig的协方差矩阵
[pc,latent,tspuare]=pcacov(dsig_cov); %主成分分析
pc(:,2:5)=[]; %保留第一个特征
y=m'*pc; %求第一个主分量
figure(2);
hist(y,40); %画直方图
h=jbtest(y,0.05); %正态分布检验
结果:
结论
本次只是给出用法,这两附图不一样,因为软件使用的是正态性分布的假设检验,代码只是正态分布。想进一步研究还要靠自己呀!
路漫漫其修远兮~