《模式识别与智能计算》第2章 特征的选择与优化

本文通过MATLAB软件对手写数字的templet.mat数据集进行了特征空间分布分析。首先介绍了如何加载数据并展示类别0的分布情况,然后给出了利用书中代码进行特征压缩、主成分分析等步骤的具体操作及结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

手写数字特征空间分布分析

前言:此篇针对一部分环境配置失败读者。
上篇:《模式识别与智能计算》—MATLAB技术实现 软件配置

光盘内容数据

下载:《模式识别与智能计算》MATLAB技术实现(光盘文件)之后,可以在 手写数字分类文件夹内找到templet.mat数据。
软件选择0类别对应templet中的pattern(1).feature;

使用软件查询

这里写图片描述
这里写图片描述

MATLAB打开templet.mat

这里写图片描述

利用软件进行样本特征分析

如图所示,打开样本分布:
这里写图片描述
类别0的分布如下:
这里写图片描述

利用书中代码进行样本特征分析

先加载template.mat代码如下:

x=pattern(1).feature;
for i = 1:5
    m(i,:)=sum(x((i-1)*5+1:(i-1)*5+5,:));   %特征压缩从25到5维
end
dsig_cov=cov(m');   %求mixedsig的协方差矩阵
[pc,latent,tspuare]=pcacov(dsig_cov);   %主成分分析
pc(:,2:5)=[];   %保留第一个特征
y=m'*pc;    %求第一个主分量
figure(2);
hist(y,40);     %画直方图
h=jbtest(y,0.05);   %正态分布检验

结果:
这里写图片描述

结论

本次只是给出用法,这两附图不一样,因为软件使用的是正态性分布的假设检验,代码只是正态分布。想进一步研究还要靠自己呀!
路漫漫其修远兮~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值