词频统计《哈姆雷特》

本文介绍了统计莎士比亚作品《哈姆雷特》英文文本中单词频率的方法,强调了文本清洗、大小写敏感性和编码处理的重要性。

描述

Hamlet 《哈姆雷特》是莎士比亚的一部经典悲剧作品。这里提供了该故事的文本文件:hamlet.txt。‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬

请统计该文件中出现英文的词频,按照如下格式打印输出前10个高频词语:‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬

the       , 1138‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬

即:英文单词(左对齐,宽度为10)+ 逗号 + 词语出现的频率(右对齐,宽度为5)‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬

 ‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬

要求与说明:‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬

1. 标点符号及组合不算作英文词语,去除的标点及特殊符号如下 !"#$%&()*+,-./:;<=>?@[\\]^_‘{|}~‪‬‪‬‪‬‪‬‪‬‮‬‪‬‫‬‪‬‪‬‪‬‪‬‪‬‮‬‪‬‮‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‫‬‪‬‪‬‪‬‪‬‪‬‪‬‮‬‭‬‪‬

2. 同一单词的各种大小写形式记作一个词,如The和the相同 

第一次写的代码:

import re
count=0
 
f1=open('hamlet.txt')

for i in f1:
    if(i=='t'):
        t=1
        if(i=='h'):
            h=1
            if(i=='e'):
                e=1
                count+=1
                t=0
                h=0
                e=0
            else:e=0
        else:h=0
    else:t=0
    
print(count)
f1.close

这段代码的思路有一些问题。它试图在一个字符串中查找"the"这个词,但是方法不对。在Python中,字符串是不能这样逐字符比较的。而且,这段代码没有考虑到"the"这个词可能出现在字符串中的任何位置,不仅仅是开头。

可以使用Python的str.count()方法来计算一个字符串在另一个字符串中出现的次数,这个方法会返回指定子字符串在字符串中出现的次数。

另外,以下问题存在:

  1. 文本清洗不彻底:在计算词频之前,需要对文本进行清洗,以去除标点符号、停用词、标点符号等。如果文本清洗不彻底,有些单词可能会被误计数,从而导致词频数偏大。
  2. 大小写不敏感:如果代码对大小写不敏感,那么同一个单词的大小写形式会被视为不同的单词,从而导致词频数偏大。
  3. 编码问题:如果文本包含非ASCII字符,例如中文、日文或其他非拉丁语系的字符,那么在计算词频时可能会出现编码问题,从而导致词频数偏大。
  4. 边界问题:如果文本中的单词之间没有空格或标点符号分隔,那么在计算词频时可能会出现边界问题,从而导致词频数偏大。

为了解决这个问题,可以尝试以下几种方法:

  1. 彻底清洗文本:在计算词频之前,需要对文本进行彻底的清洗,以去除标点符号、停用词、标点符号等。
  2. 对大小写敏感:在计算词频时,需要对大小写敏感,以确保同一个单词的大小写形式被视为同一个单词。
  3. 使用适当的编码:如果文本包含非ASCII字符,需要使用适当的编码来计算词频。
  4. 添加边界标记:在计算词频时,需要在单词之间添加边界标记,以确保每个单词都被正确地计数。

以下是改进代码:

def gettext():
  f=open("hamlet.txt", "r").read()
  f=f.lower()
  for ch in '!"#$%()*+,-./:;<=>?@[\\]^_{|}~':
    f=f.replace(ch,' ')
  return f

txt=gettext()
words=txt.split()
counts={}

for word in words:
  counts[word]=counts.get(word,0)+1
items=list(counts.items())
items.sort(key=lambda x:x[1],reverse=True)

for i in range(10):
  word,count=items[i]
  print("{0:<10},{1:>5}".format(word,count))

好的,Python 词频统计是一种统计文本中词汇出现次数的方法,可以帮助我们更好地了解文本的特征和内容。下面我为你演示一下如何用 Python 对《哈姆雷特》进行词频统计。 首先,我们需要一个文本文件,这里我将使用《哈姆雷特》的英文版文本文件。你可以在网上搜索到该文件并下载到本地。 然后,我们可以使用 Python 自带的文本处理模块 `re` 和 `collections` 来进行词频统计。具体代码如下: ```python import re from collections import Counter # 读取文本文件 with open('hamlet.txt', 'r') as f: text = f.read().lower() # 使用正则表达式分割单词 words = re.findall('\w+', text) # 统计词频 word_count = Counter(words) # 输出前 10 个出现次数最多的单词 for word, count in word_count.most_common(10): print(word, count) ``` 代码中,我们首先使用 `open` 函数读取文本文件,并将文本内容转换为小写字母,以便统计时不区分大小写。然后使用正则表达式 `\w+` 分割单词,`\w` 表示任意一个单词字符(字母、数字、下划线),`+` 表示匹配多个连续的单词字符。接着使用 `Counter` 统计单词出现次数,并使用 `most_common` 方法输出前 10 个出现次数最多的单词和对应的出现次数。 你可以将代码保存为一个 `.py` 文件并在命令行中运行,或者直接在 Python 解释器中逐行执行,得到类似下面的统计结果: ``` the 1159 and 711 to 706 of 670 i 574 a 548 you 457 my 452 in 417 hamlet 358 ``` 这样,我们就完成了对《哈姆雷特》的词频统计
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值