stone2 [期望]

也许更好的阅读体验

D e s c r i p t i o n \mathcal{Description} Description
n n n 堆石子,依次编号为 1 , 2 , … , n 1, 2,\ldots , n 1,2,,n,其中第 i i i 堆有 a i a_i ai 颗石子
你每次在仍然有石子的石子堆中等概率随机选择一堆石子,并取走其中一颗石子
求第 1 1 1 堆石子被取走的时间的期望

n ≤ 5 × 1 0 5 , a i ≤ 5 × 1 0 5 n\leq 5\times 10^5,a_i\leq 5\times 10^5 n5×105,ai5×105

S o l u t i o n \mathcal{Solution} Solution
这题其实也不难,然而也不是考虑 D P DP DP,和stone一样
问题要求的实际就是在第 1 1 1堆石子被取完之前,总共有多少个石子被拿走了
显然 a 1 a_1 a1被拿完了,再考虑期望的线性性,由于你取走其他堆石子对当前堆没有影响,可以单独考虑每一堆石子被取了多少个

先考虑 a i a_i ai没有全部被取完
假设第 i i i堆石子被取走了 x ( 0 ≤ x ≤ a i − 1 ) x\left(0\leq x\leq a_i-1\right) x(0xai1)颗石子,因为第 i i i堆石子没被取完,而没有继续被取走肯定是因为第 1 1 1堆石子被取完了
1 1 1为从第一堆石子中取一颗石子, 0 0 0为从第二堆石子中取一颗石子
那么方案数就是有 a 1 a_1 a1 1 1 1 x x x 0 0 0的长度为 a 1 + x a_1+x a1+x的且最后一位是 1 1 1的二进制串的个数
则有 ( a 1 + x − 1 x ) \begin{pmatrix}a_1+x-1 \\ x\end{pmatrix} (a1+x1x)种方案数,总方案数为 2 a 1 + x 2^{a_1+x} 2a1+x,那么概率就是 p x = ( a 1 + x − 1 x ) 2 a 1 + x p_x=\frac{\begin{pmatrix}a_1+x-1\\ x\end{pmatrix}}{2^{a_1+x}} px=2a1+x(a1+x1x)

x = a i x=a_i x=ai,这个看起来没原来那么好算了,想到这两种情况的概率加起来应该等于 1 1 1,所以这种情况的概率就是 q = 1 − ∑ j = 0 a i − 1 p j q=1-\sum\limits_{j=0}^{a_i-1}p_j q=1j=0ai1pj
则我们得到 E i = ∑ j = 0 a i − 1 j ∗ p j + q a i E_i=\sum\limits_{j=0}^{a_i-1}j*p_j+qa_i Ei=j=0ai1jpj+qai
总期望就是 E = ∑ i = 2 n E i E=\sum\limits_{i=2}^nE_i E=i=2nEi,写复杂点就是

E = ( ∑ i = 2 n ( ∑ j = 0 a i − 1 j ∗ ( a 1 + j − 1 j ) 2 a 1 + j ) + a i ( 1 − ∑ j = 0 a i − 1 ( a 1 + j − 1 j ) 2 a 1 + j ) ) + a 1 E=\left(\sum\limits_{i=2}^n\left(\sum\limits_{j=0}^{a_i-1}j*\frac{\begin{pmatrix}a_1+j-1 \\ j\end{pmatrix}}{2^{a_1+j}}\right)+a_i\left(1-\sum\limits_{j=0}^{a_i-1}\frac{\begin{pmatrix}a_1+j-1 \\ j\end{pmatrix}}{2^{a_1+j}}\right)\right)+a_1 E=i=2nj=0ai1j2a1+j(a1+j1j)+ai1j=0ai12a1+j(a1+j1j)+a1

这个东西怎么维护呢,直接考虑 a i a_i ai变成 a i + 1 a_i+1 ai+1的情况,我们考虑里面那个 ∑ \sum 的变化,实际上只有枚举上界增大 1 1 1变成了 a i a_i ai我们直接对 a i a_i ai的所有取值的答案都预处理出来就行了

C o d e \mathcal{Code} Code

/*******************************
Author:Morning_Glory
LANG:C++
Created Time:2019年11月08日 星期五 16时20分30秒
*******************************/
#include <cstdio>
#include <fstream>
using namespace std;
const int maxn = 1000006;
const int lim = 1000000;
const int h = 500000;
const int mod = 323232323;
//cin为我打的快读板子,详细内容可去看以前的代码,总是在这里写感觉有点影响阅读
int n,p,ans,a;
int fac[maxn],ifac[maxn],inv[maxn],mi[maxn],f[maxn],g[maxn];
int C (int n,int m){	return 1ll*fac[n]*ifac[n-m]%mod*ifac[m]%mod;}
int main()
{
	fac[0]=ifac[0]=mi[0]=inv[1]=1;
	for (int i=2;i<=lim;++i)	inv[i]=(mod-1ll*mod/i*inv[mod%i]%mod);
	for (int i=1;i<=lim;++i)	fac[i]=1ll*fac[i-1]*i%mod,ifac[i]=1ll*ifac[i-1]*inv[i]%mod,mi[i]=1ll*mi[i-1]*inv[2]%mod;

	cin>>n>>a;
	ans=a;

	//枚举上界为i
	g[0]=mi[a];
	for (int i=1;i<=h;++i){
		int p=1ll*C(a+i-1,i)*mi[a+i]%mod;
		f[i]=(f[i-1]+1ll*i*p%mod)%mod;
		g[i]=(g[i-1]+p)%mod;
	}

	//石子数为i的答案
	for (int i=h;i>=1;--i)	f[i]=(f[i-1]+1ll*i*(mod+1-g[i-1])%mod)%mod;

	for (int i=2;i<=n;++i)	cin>>a,ans=(ans+f[a])%mod;

	printf("%d\n",ans);
	return 0;
}

如有哪里讲得不是很明白或是有错误,欢迎指正
如您喜欢的话不妨点个赞收藏一下吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值