rcnn 步骤

博客介绍目标检测主要流程,包括用selective search实现region proposals、卷积网络提取特征、SVM分类,对选取的region进行扭曲缩放,用NMS修正bbox。还详细说明了NMS方法,通过设定阈值判断矩形框重叠度,保留有用的矩形框。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 通过selective search实现 region proposals
  2. 用卷积网络提取特征
  3. 用SVM进行分类
    其中对选取的region需要进行扭曲缩放
    并使用NMS来对最后的bbox进行修正
    原文中的图片缩放
    主要流程
    在这里插入图片描述
    NMS说明,原文: https://www.cnblogs.com/makefile/p/nms.html © 康行天下
    在这里插入图片描述

定位一个车辆,最后算法就找出了一堆的方框,我们需要判别哪些矩形框是没用的。非极大值抑制的方法是:先假设有6个矩形框,根据分类器的类别分类概率做排序,假设从小到大属于车辆的概率 分别为A、B、C、D、E、F。

(1)从最大概率矩形框F开始,分别判断A~E与F的重叠度IOU是否大于某个设定的阈值;

(2)假设B、D与F的重叠度超过阈值,那么就扔掉B、D;并标记第一个矩形框F,是我们保留下来的。

(3)从剩下的矩形框A、C、E中,选择概率最大的E,然后判断E与A、C的重叠度,重叠度大于一定的阈值,那么就扔掉;并标记E是我们保留下来的第二个矩形框。

就这样一直重复,找到所有被保留下来的矩形框。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值