在快速入门这一个章节,使用官方提供的算力或者cpu可轻松得进行代码和模型的运作与学习。
由于我是周末开始学习,还没来得及申请算力,就暂时先试用cpu;
关键指令和关键词参数表总结
指令/关键词 | 参数 | 作用 |
---|---|---|
mindspore.dataset |
- | 提供数据集加载和处理功能。 |
MnistDataset |
path |
加载MNIST数据集。 |
vision.Rescale |
rescale |
图像数据归一化,通常用于将像素值缩放到0-1范围。 |
vision.Normalize |
mean , std |
对图像数据进行标准化处理,减去均值并除以标准差。 |
vision.HWC2CHW |
- | 将图像数据从HWC格式转换为CHW格式。 |
transforms.TypeCast |
type |
将数据类型转换为指定类型。 |
nn.Cell |
- | 所有网络层的基类,用于构建自定义神经网络。 |
nn.Flatten |
- | 将多维输入展平为二维。 |
nn.SequentialCell |
*layers |
顺序容器,按顺序将层传递给输入。 |
nn.Dense |
in_channels , out_channels , has_bias |
全连接层,具有输入通道数和输出通道数。 |
nn.ReLU |
- | 激活函数,应用Rectified Linear Unit (ReLU) 非线性变换。 |
nn.CrossEntropyLoss |
- | 计算交叉熵损失,用于分类任务。 |
nn.SGD |
params , learning_rate |
随机梯度下降优化器,更新模型参数。 |
mindspore.value_and_grad |
fn , grad_position , params , has_aux |
获取函数值和梯度,用于反向传播。 |
mindspore.save_checkpoint |
network , ckpt_file_name |
保存模型参数到指定文件。 |
mindspore.load_checkpoint |
ckpt_file_name |
从指定文件加载模型参数。 |
mindspore.load_param_into_net |
network , param_dict |
将加载的参数字典导入网络模型。 |
1. 基本设置
首先,导入必要的库。
当然如果在自己电脑上运作,又不是使用现成的实验环境,则需要先布置实验环境;
pip install download
%%capture captured_output
# 实验环境已经预装了mindspore==2.3.0rc1,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1
%%capture captured_output
# 实验环境已经预装了mindspore==2.3.0rc1,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.3.0rc1
import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset
import time
print(time.strftime('%Y-%m-%d %H:%M:%S'),time.localtime(time.time