2021-10-21 Laplace分布和指数分布,相同参数的两个指数分布之差是Laplace分布

这篇博客探讨了Laplace分布和指数分布的概率密度函数及其累积分布函数。通过数学推导证明了一个引理:若两个独立的指数随机变量之差Y=X1-X2,那么Y服从Laplace分布,其中Y的参数与指数变量的参数有关。这个结果对于理解连续随机变量的性质和概率分布的转换具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先给出一些公式:

Laplace分布Lap(b)Lap(b)Lap(b)的probability density function:
f(x;μ,b)=12bexp⁡(−∣x−μ∣b)=12b{exp⁡(−μ−xb), x<μexp⁡(x−μb), x≥μ f(x;\mu, b) = \frac{1}{2b}\exp(-\frac{|x - \mu|}{b}) = \frac{1}{2b}\left\{ \begin{aligned} &\exp(-\frac{\mu-x}{b}), &\ x<\mu \\ &\exp(\frac{x-\mu}{b}), &\ x\geq\mu \end{aligned}\right. f(x;μ,b)=2b1exp(bxμ)=2b1exp(bμx),exp(bxμ), x<μ xμ
cumulative distribution function:
F(x)={12exp⁡(x−μb), x<μ1−12exp⁡(μ−xb), x≥μ F(x) = \left\{ \begin{aligned} &\frac{1}{2}\exp(\frac{x-\mu}{b}), &\ x<\mu \\ &1 - \frac{1}{2}\exp(\frac{\mu - x}{b}), &\ x\geq\mu \end{aligned}\right. F(x)=21exp(bxμ),121exp(bμx), x<μ xμ
指数分布Expo(λ)Expo(\lambda)Expo(λ)的probability density function:
f(x;λ)={λe−λx, x≥00, x<0 f(x;\lambda) = \left\{ \begin{aligned} &\lambda e^{-\lambda x}, &\ x\geq 0 \\ &0, &\ x<0 \end{aligned}\right. f(x;λ)={λeλx,0, x0 x<0
cumulative distribution function:
F(x)={1−e−λx, x≥00, x<0 F(x) = \left\{ \begin{aligned} &1 - e^{-\lambda x}, &\ x\geq 0 \\ &0, &\ x<0 \end{aligned}\right. F(x)={1eλx,0, x0 x<0

Lemma.Y=X1−X2Y = X_1 - X_2Y=X1X2,且X1,X2∼Expo(λ)X_1, X_2 \sim Expo(\lambda)X1,X2Expo(λ),则Y∼Lap(1λ)Y \sim Lap(\frac{1}{\lambda})YLap(λ1).【注意:X1,X2X_1,X_2X1,X2λ\lambdaλ不相等时,YYY并不是Laplace分布】

Proof.
fY(y)=fX1−X2(y)=∫x1=0∞fX1(x1)fX2(x1−y)dx1 \begin{aligned} f_Y(y) = f_{X_1 - X_2}(y) = \int_{x_1 = 0}^{\infty} f_{X_1}(x_1) f_{X_2}(x_1-y)d x_1 \end{aligned} fY(y)=fX1X2(y)=x1=0fX1(x1)fX2(x1y)dx1
考虑到fX2f_{X_2}fX2时分段函数,因此上述式子需要做分类讨论。当y≥0y\geq 0y0时,
fY(y)=∫x1=y∞fX1(x1)fX2(x1−y)dx1=∫x1=y∞λe−λx1λe−λ(x1−y)dx1=λeλy∫x1=y∞λe−2λx1dx1=λ2eλye−2λy=λ2e−λy \begin{aligned} f_Y(y) =& \int_{x_1 = y}^{\infty} f_{X_1}(x_1) f_{X_2}(x_1-y)d x_1 \\ =& \int_{x_1 = y}^{\infty} \lambda e^{-\lambda x_1} \lambda e^{-\lambda(x_1 - y)}d x_1 \\ =& \lambda e^{\lambda y}\int_{x_1 = y}^{\infty}\lambda e^{-2\lambda x_1}d x_1 \\ =& \frac{\lambda}{2}e^{\lambda y} e^{-2\lambda y} \\ =& \frac{\lambda}{2}e^{-\lambda y} \end{aligned} fY(y)=====x1=yfX1(x1)fX2(x1y)dx1x1=yλeλx1λeλ(x1y)dx1λeλyx1=yλe2λx1dx12λeλye2λy2λeλy
y<0y<0y<0时,
fY(y)=∫x1=0∞fX1(x1)fX2(x1−y)dx1=∫x1=0∞λe−λx1λe−λ(x1−y)dx1=λeλy∫x1=0∞λe−2λx1dx1=λ2eλy \begin{aligned} f_Y(y) =& \int_{x_1 = 0}^{\infty} f_{X_1}(x_1) f_{X_2}(x_1-y)d x_1 \\ =& \int_{x_1 = 0}^{\infty} \lambda e^{-\lambda x_1} \lambda e^{-\lambda(x_1 - y)}d x_1 \\ =& \lambda e^{\lambda y}\int_{x_1 = 0}^{\infty}\lambda e^{-2\lambda x_1}d x_1 \\ =& \frac{\lambda}{2}e^{\lambda y} \end{aligned} fY(y)====x1=0fX1(x1)fX2(x1y)dx1x1=0λeλx1λeλ(x1y)dx1λeλyx1=0λe2λx1dx12λeλy

综上,得fY(y)=λ2e−λ∣y∣f_Y(y) = \frac{\lambda}{2}e^{-\lambda|y|}fY(y)=2λeλy.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值