先给出一些公式:
Laplace分布Lap(b)Lap(b)Lap(b)的probability density function:
f(x;μ,b)=12bexp(−∣x−μ∣b)=12b{exp(−μ−xb), x<μexp(x−μb), x≥μ
f(x;\mu, b) = \frac{1}{2b}\exp(-\frac{|x - \mu|}{b}) = \frac{1}{2b}\left\{
\begin{aligned}
&\exp(-\frac{\mu-x}{b}), &\ x<\mu \\
&\exp(\frac{x-\mu}{b}), &\ x\geq\mu
\end{aligned}\right.
f(x;μ,b)=2b1exp(−b∣x−μ∣)=2b1⎩⎪⎨⎪⎧exp(−bμ−x),exp(bx−μ), x<μ x≥μ
cumulative distribution function:
F(x)={12exp(x−μb), x<μ1−12exp(μ−xb), x≥μ
F(x) = \left\{
\begin{aligned}
&\frac{1}{2}\exp(\frac{x-\mu}{b}), &\ x<\mu \\
&1 - \frac{1}{2}\exp(\frac{\mu - x}{b}), &\ x\geq\mu
\end{aligned}\right.
F(x)=⎩⎪⎨⎪⎧21exp(bx−μ),1−21exp(bμ−x), x<μ x≥μ
指数分布Expo(λ)Expo(\lambda)Expo(λ)的probability density function:
f(x;λ)={λe−λx, x≥00, x<0
f(x;\lambda) = \left\{
\begin{aligned}
&\lambda e^{-\lambda x}, &\ x\geq 0 \\
&0, &\ x<0
\end{aligned}\right.
f(x;λ)={λe−λx,0, x≥0 x<0
cumulative distribution function:
F(x)={1−e−λx, x≥00, x<0
F(x) = \left\{
\begin{aligned}
&1 - e^{-\lambda x}, &\ x\geq 0 \\
&0, &\ x<0
\end{aligned}\right.
F(x)={1−e−λx,0, x≥0 x<0
Lemma.Y=X1−X2Y = X_1 - X_2Y=X1−X2,且X1,X2∼Expo(λ)X_1, X_2 \sim Expo(\lambda)X1,X2∼Expo(λ),则Y∼Lap(1λ)Y \sim Lap(\frac{1}{\lambda})Y∼Lap(λ1).【注意:X1,X2X_1,X_2X1,X2的λ\lambdaλ不相等时,YYY并不是Laplace分布】
Proof.
fY(y)=fX1−X2(y)=∫x1=0∞fX1(x1)fX2(x1−y)dx1
\begin{aligned}
f_Y(y) = f_{X_1 - X_2}(y) = \int_{x_1 = 0}^{\infty} f_{X_1}(x_1) f_{X_2}(x_1-y)d x_1
\end{aligned}
fY(y)=fX1−X2(y)=∫x1=0∞fX1(x1)fX2(x1−y)dx1
考虑到fX2f_{X_2}fX2时分段函数,因此上述式子需要做分类讨论。当y≥0y\geq 0y≥0时,
fY(y)=∫x1=y∞fX1(x1)fX2(x1−y)dx1=∫x1=y∞λe−λx1λe−λ(x1−y)dx1=λeλy∫x1=y∞λe−2λx1dx1=λ2eλye−2λy=λ2e−λy
\begin{aligned}
f_Y(y) =& \int_{x_1 = y}^{\infty} f_{X_1}(x_1) f_{X_2}(x_1-y)d x_1 \\
=& \int_{x_1 = y}^{\infty} \lambda e^{-\lambda x_1} \lambda e^{-\lambda(x_1 - y)}d x_1 \\
=& \lambda e^{\lambda y}\int_{x_1 = y}^{\infty}\lambda e^{-2\lambda x_1}d x_1 \\
=& \frac{\lambda}{2}e^{\lambda y} e^{-2\lambda y} \\
=& \frac{\lambda}{2}e^{-\lambda y}
\end{aligned}
fY(y)=====∫x1=y∞fX1(x1)fX2(x1−y)dx1∫x1=y∞λe−λx1λe−λ(x1−y)dx1λeλy∫x1=y∞λe−2λx1dx12λeλye−2λy2λe−λy
当y<0y<0y<0时,
fY(y)=∫x1=0∞fX1(x1)fX2(x1−y)dx1=∫x1=0∞λe−λx1λe−λ(x1−y)dx1=λeλy∫x1=0∞λe−2λx1dx1=λ2eλy
\begin{aligned}
f_Y(y) =& \int_{x_1 = 0}^{\infty} f_{X_1}(x_1) f_{X_2}(x_1-y)d x_1 \\
=& \int_{x_1 = 0}^{\infty} \lambda e^{-\lambda x_1} \lambda e^{-\lambda(x_1 - y)}d x_1 \\
=& \lambda e^{\lambda y}\int_{x_1 = 0}^{\infty}\lambda e^{-2\lambda x_1}d x_1 \\
=& \frac{\lambda}{2}e^{\lambda y}
\end{aligned}
fY(y)====∫x1=0∞fX1(x1)fX2(x1−y)dx1∫x1=0∞λe−λx1λe−λ(x1−y)dx1λeλy∫x1=0∞λe−2λx1dx12λeλy
综上,得fY(y)=λ2e−λ∣y∣f_Y(y) = \frac{\lambda}{2}e^{-\lambda|y|}fY(y)=2λe−λ∣y∣.