安装TensorFlow的过程以及遇到No module named 'numpy.core._mutiiarray_umath'及解决办法

在安装TensorFlow 1.4的过程中,遇到'numpy.core._mutiiarray_umath'模块缺失的错误。尝试更新pip和numpy至特定版本,如pip18和numpy1.17.4,问题依然存在。在PyCharm中导入tensorflow时出现错误,但在Python IDLE中正常。更换Python版本为3.7后,numpy导入正常。最终通过卸载并重新安装PyCharm 2019.3.3解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装TensorFlow的过程以及遇到No module named 'numpy.core._mutiiarray_umath’及解决办法
本人因学习内容安装TensorFlow(CPU版本,此处没有使用anaconda)
安装过程:
先安装Python3.6.6
之后在命令行中输入Python,如返回版本号及相关信息,说明安装成功,安装Python过程可参考其他安装教程,较容易,
之后使用pip,从清华大学镜像网站上下载TensorFlow1.4
输入命令:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.4
(Python版本和TensorFlow版本有对应关系,此处亲测Python3.6.6和TensorFlow1.4可以)
安装过程中可能会出现pip版本问题,这个可以通过命令提示更新pip
输入pip list查看安装的库以及对应版本
有时如果numpy和pip版本不对应也会出现问题,此处尝试pip18和nunpy1.17.4有效(之后细说)
之后到了激动人心的时候了输入Python
进入Python之后,输入import TensorFlow as tf回车,
本人之前也有过或多或少的error,有提示numpy版本太新,pip需要升级等问题,不过版本问题还是比较容易更改的,通过pip进行卸载和重装,
之后到了比较让人费解的问题:当我在命令行中输入:
import tensorflow as tf
hello = tf.constant(‘helloworld’)
sess = tf.Session()
print(sess,run(hello))
点击回车后,命令行正常显示
是不是很激动人心,however
当我在pycharm中输入import tensorflow这一行时,出现No module named 'numpy.core._mutiiarray_umath’报错,(我的机子上有Python3.7和Python3.6两个,已经把解释器更改为3.6.

### 解决 Python 中 `numpy.core._multiarray_umath` 的 `ModuleNotFoundError` 遇到此类错误通常意味着 NumPy 安装存在问题,可能是由于不完整的安装、版本冲突或其他环境配置问题引起。以下是几种可能的原因及解决方案: #### 1. 清理并重新安装 NumPy 有时旧版本的 NumPy 或者部分文件未被完全移除可能导致新版本无法正常工作。建议先彻底清理现有 NumPy 版本再尝试全新安装。 ```bash pip uninstall numpy pip install --no-cache-dir numpy ``` 这会强制 pip 不使用缓存的数据来重试下载和安装最新稳定版 NumPy[^4]。 #### 2. 更新 pip 和 setuptools 工具链 过时的包管理工具也可能引发兼容性问题,因此更新这些工具到最新版本有助于解决问题。 ```bash python -m pip install --upgrade pip setuptools wheel ``` 通过上述命令可以确保使用的构建工具是最新的,从而减少因工具链老化带来的潜在风险[^5]。 #### 3. 使用虚拟环境隔离依赖关系 创建一个新的虚拟环境来进行开发测试能够有效避免不同项目的库之间发生冲突。 ```bash python -m venv myenv source myenv/bin/activate # Linux/MacOS myenv\Scripts\activate # Windows pip install numpy tensorflow matplotlib ``` 这样可以在独立的空间内安装所需的软件包而不影响全局环境设置[^2]。 #### 4. 检查操作系统特定需求 对于某些平台特别是 Windows 用户来说,在编译扩展模块之前还需要额外安装 Microsoft Visual C++ Build Tools 来满足必要的编译条件[^3]。 如果按照以上方法操作之后仍然存在相同的问题,则可能存在更深层次的操作系统层面或者是 TensorFlow 自身的问题,此时推荐查看官方文档获取更多帮助和支持。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值