7-1 求解马鞍点问题

 

若矩阵Anm中某个元素A[i][j]是矩阵第i行中值最小的元素,同时又是第j列中值最大的元素,则称元素A[i][j]是矩阵中的一个马鞍点。

设以二维数组存储矩阵,编写算法求矩阵A中的所有马鞍点,算法的时间复杂度要尽量的低。

注意当最大值(最小值)并列相等时,会出现多鞍点的情况。

输入格式:

第一行输入矩阵的总行数M和总列数N,以空格间隔。

之后的M行,依次输入矩阵的各行数据,以空格间隔。

输出格式:

若有马鞍点,则以行序为主序,依次输出各个马鞍点。

每个马鞍点以(row,col,val)的形式输出,其中row 代表马鞍点的行号,col代表马鞍点的列号,val代表马鞍点的值。

若无马鞍点,则输出“NONE”。

输入样例:

4 6
45 67 87 34 56 26
93 75 85 75 92 75
94 85 96 75 78 75
23 17 75 28 98 61

输出样例:

(2,4,75)(2,6,75)(3,4,75)(3,6,75)
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
#define M 100
int arr[M][M] = { 0 }, n, m, ans = 0;
vector<int> ind, ind1;
bool check(int x, int y) {
    for (int i = 1; i <= n; i++) ind1.push_back(i);
    sort(ind1.begin(), ind1.end(), [&](int i, int j)->bool{
        return arr[i][y] > arr[j][y];
    });
    if (arr[x][y] == arr[ind1[0]][y]) return true;
    return false;
}
void fun(int x) {
    for (int i = 1; i <= m; i++) ind.push_back(i);
    sort(ind.begin(), ind.end(), [&](int i, int j)->bool{
        return arr[x][i] < arr[x][j];
    });
    for (int i = 0; i < m; i++) {
        if (arr[x][ind[i]] != arr[x][ind[0]]) break;
        if (!check(x, ind[i])) continue;
        printf("(%d,%d,%d)",x, ind[i], arr[x][ind[i]]);
        ans += 1;
    }
    return ;
}
int main(){
    cin >> n >> m;
    for (int i = 1; i <= n; i++) 
        for (int j = 1; j <= m; j++) 
            cin >> arr[i][j];
    for (int i = 1; i <= n; i++) {
        fun(i);
        ind.clear();
        ind1.clear();
    }
    if (!ans) cout << "NONE" << endl;
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云儿乱飘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值