深入探索语言模型:原理、应用与评估
目录
一、 引言
在自然语言处理(NLP)领域,语言模型是一个基础且关键的组件。它们不仅能够预测下一个单词的概率,还能被用于文本生成、语音识别等多种任务。
二、语言模型原理
语言模型的核心目标是计算一个句子出现的概率,即给定一个序列的前面部分,预测下一个单词的概率分布。
三、概率语言模型
最初,语言模型基于简单的n-gram统计模型,该模型通过计算单词序列的频率来估计概率。
P(w_1, w_2, ..., w_n) = P(w_1) * P(w_2|w_1) * ... * P(w_n|w_1, ..., w_n-1)
```
四、 深度学习语言模型
随着深度学习的发展,基于神经网络的语言模型如循环神经网络(RNN)和Transformer逐渐成为主流。
循环神经网络(RNN)
RNN通过维护一个隐藏状态来捕捉文本序列