深入探索语言模型:原理、应用与评估

深入探索语言模型:原理、应用与评估

目录

深入探索语言模型:原理、应用与评估

一、 引言

二、语言模型原理

三、概率语言模型

四、 深度学习语言模型

五、 代码示例

六、 语言模型的评估

七、案例研究


一、 引言

在自然语言处理(NLP)领域,语言模型是一个基础且关键的组件。它们不仅能够预测下一个单词的概率,还能被用于文本生成、语音识别等多种任务。

二、语言模型原理

语言模型的核心目标是计算一个句子出现的概率,即给定一个序列的前面部分,预测下一个单词的概率分布。

三、概率语言模型

最初,语言模型基于简单的n-gram统计模型,该模型通过计算单词序列的频率来估计概率。


P(w_1, w_2, ..., w_n) = P(w_1) * P(w_2|w_1) * ... * P(w_n|w_1, ..., w_n-1)
```

四、 深度学习语言模型

随着深度学习的发展,基于神经网络的语言模型如循环神经网络(RNN)和Transformer逐渐成为主流。

 循环神经网络(RNN)

RNN通过维护一个隐藏状态来捕捉文本序列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幽游白书207

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值