最长有效括号
给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。
示例 1:
输入: “(()”
输出: 2
解释: 最长有效括号子串为 “()”
示例 2:
输入: “)()())”
输出: 4
解释: 最长有效括号子串为 “()()”
解题思路
输入的“(”是否有与之对应的“)”,求最大有效括号长度
方法一:暴力解法
解题思路
1、括号都是成对出现的,最长有效括号数一定是偶数
2、依次遍历当前子串是否为有效子串(从大往小遍历)
3、直到出现符合的子串,返回子串长度
代码
class Solution:
def longestValidParentheses(self, s: str) -> int:
#定义函数判断是否为有效子串
def isValid(x):
#用栈的方式实现
stack = []
for i in range(len(x)):
#如果当前为左括号将其入栈
if x[i] == '(':
stack.append('(');
#如果当前为右括号,判断此时栈顶元素是否为左括号,是的话将其弹出,
#如果不是则当前子串不是有效子串
elif stack!=[] and stack[-1] == '(':
stack.pop();
else:
return False
#有效子串栈中元素括号是一一对应的,栈中元素一定为空
return stack==[]
#主调函数
if len(s)<2:return 0
n = len(s)
#判断n的奇偶性:若为奇数取其最大偶数n-1,若为偶数从n开始,每次遍历长度-2,到2 为止
for i in range(n if n%2==0 else n-1,0,-2):
for j in range(n-i+1):
#将其放入isValid的函数中
if isValid(s[j:j+i]):
return i
return 0
方法二:动态规划
解题思路
1、定义 dp[i] 表示以下标 i 字符结尾的最长有效括号的长度。
2、将 dp 数组全部初始化为 0 。显然有效的子串一定以‘)’ 结尾,因此我们可以知道以 ‘(’ 结尾的子串对应的 dp 值必定为 0 ,我们只需要求解‘)’ 在 dp 数组中对应位置的值。
3、状态转移方程的推导(来源:力扣官解)
寻找与i对应的位置
状态转移方程
文字解释
代码
class Solution:
def longestValidParentheses(self, s: str) -> int:
n = len(s)
if n==0:return 0
#初始化一个全0的dp数组
dp = [0]*n
for i in range(len(s)):
# i-dp[i-1]-1是与当前)对称的位置
if s[i]==')' and i-dp[i-1]-1>=0 and s[i-dp[i-1]-1]=='(':
#状态转移方程
dp[i]=dp[i-1]+dp[i-dp[i-1]-2]+2
return max(dp)
方法三:栈
解题思路
1、始终保持栈底元素为当前已经遍历过的元素中「最后一个没有被匹配的右括号的下标」,即在一开始的时候往栈中放入一个值为 −1 的元素(如图)。
2、对于遇到的每个‘(’ ,我们将它的下标放入栈中
3、对于遇到的每个‘)’ ,我们先弹出栈顶元素表示匹配了当前右括号:
如果栈不为空,当前右括号的下标减去栈顶元素即为「以该右括号为结尾的最长有效括号的长度」
4、如果栈为空,说明当前的右括号为没有被匹配的右括号,我们将其下标放入栈中来更新我们之前提到的「最后一个没有被匹配的右括号的下标」
5、依次遍历直到遍历到最后一个数
代码
class Solution:
def longestValidParentheses(self, s: str) -> int:
#建立一个栈,栈底元素为-1
stack = [-1]
length = 0
max_length = 0
#遍历,如果是左括号,将下标放入栈中,如果不是弹出栈顶元素(即与之对应的右括号)
for i in range(len(s)):
if s[i] == '(':
stack.append(i)
else:
stack.pop()
#若栈为空,把最后一个没有被匹配的右括号的下标放入栈来更新
if stack == []:
stack.append(i)
#如果栈不为空,当前右括号的下标减去栈顶元素
else:
length = i-stack[-1]
#更新最大长度
max_length = max(max_length,length)
return max_length
方法四:正向逆向结合法
解题思路
1、利用两个计数器left 和 right 。
2、从左到右遍历字符串,对于遇到的每个‘(’,left +1,对于遇到的每个 ‘)’ ,right +1。
3、当left = right时,计算当前有效字符串的长度(2right),并且记录目前为止找到的最长子字符串。当right >left时,left 和 right 计数器同时变回 0。
4、从右向左遍历字符串,对于遇到的每个‘(’,left +1,对于遇到的每个 ‘)’ ,right +1。
当left = right时,计算当前有效字符串的长度(2left),当right<left时,left 和 right 计数器同时变回 0。
代码
lass Solution:
def longestValidParentheses(self, s: str) -> int:
n, left, right, maxlength = len(s), 0, 0, 0
#从左向右遍历
for i in range(n):
if s[i] =='(':
left+=1
else:
right+=1
if left == right:
maxlength = max(maxlength, 2 * right)
elif right > left:
left = right = 0
#从右向左遍历
left = right = 0
for i in range(n-1,-1,-1):
if s[i] =='(':
left+=1
else:
right+=1
if left == right:
maxlength = max(maxlength, 2 * left)
elif right < left:
left = right = 0
return maxlength