(力扣每日一题)最长有效括号

本文介绍了如何解决力扣每日一题中的最长有效括号问题,通过四种不同的方法:暴力解法、动态规划、栈以及正向逆向结合法,详细解析了解题思路和代码实现。动态规划方法中,定义dp[i]表示以i结尾的最长有效括号长度,栈方法中,始终保持栈底元素为最后一个未匹配的右括号下标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最长有效括号

给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。
示例 1:
输入: “(()”
输出: 2
解释: 最长有效括号子串为 “()”
示例 2:
输入: “)()())”
输出: 4
解释: 最长有效括号子串为 “()()”
解题思路
输入的“(”是否有与之对应的“)”,求最大有效括号长度
方法一:暴力解法
解题思路
1、括号都是成对出现的,最长有效括号数一定是偶数
2、依次遍历当前子串是否为有效子串(从大往小遍历)
3、直到出现符合的子串,返回子串长度
代码

class Solution:
    def longestValidParentheses(self, s: str) -> int:
        #定义函数判断是否为有效子串
        def isValid(x):
        #用栈的方式实现
            stack = []
             for i in range(len(x)):
              #如果当前为左括号将其入栈
                if x[i] == '(':
                    stack.append('(');
               #如果当前为右括号,判断此时栈顶元素是否为左括号,是的话将其弹出,
               #如果不是则当前子串不是有效子串 
                elif stack!=[] and stack[-1] == '(':
                    stack.pop();
                else:
                    return False
            #有效子串栈中元素括号是一一对应的,栈中元素一定为空
            return stack==[]
        
        #主调函数
        if len(s)<2:return 0
        n = len(s)
   #判断n的奇偶性:若为奇数取其最大偶数n-1,若为偶数从n开始,每次遍历长度-2,到2 为止 
        for i in range(n if n%2==0 else n-1,0,-2):
            for j in range(n-i+1):
                #将其放入isValid的函数中
                if isValid(s[j:j+i]):
                    return i
        return 0

方法二:动态规划
解题思路
1、定义 dp[i] 表示以下标 i 字符结尾的最长有效括号的长度。
2、将 dp 数组全部初始化为 0 。显然有效的子串一定以‘)’ 结尾,因此我们可以知道以 ‘(’ 结尾的子串对应的 dp 值必定为 0 ,我们只需要求解‘)’ 在 dp 数组中对应位置的值。
3、状态转移方程的推导(来源:力扣官解)

寻找与i对应的位置
在这里插入图片描述
状态转移方程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
文字解释
在这里插入图片描述
代码

class Solution:
    def longestValidParentheses(self, s: str) -> int:
        n = len(s)
        if n==0:return 0
       #初始化一个全0的dp数组
        dp = [0]*n
        for i in range(len(s)):
            # i-dp[i-1]-1是与当前)对称的位置
            if s[i]==')' and i-dp[i-1]-1>=0 and s[i-dp[i-1]-1]=='(':
              #状态转移方程
               dp[i]=dp[i-1]+dp[i-dp[i-1]-2]+2
        return max(dp)   

方法三:栈
解题思路
1、始终保持栈底元素为当前已经遍历过的元素中「最后一个没有被匹配的右括号的下标」,即在一开始的时候往栈中放入一个值为 −1 的元素(如图)。
在这里插入图片描述
2、对于遇到的每个‘(’ ,我们将它的下标放入栈中
在这里插入图片描述
3、对于遇到的每个‘)’ ,我们先弹出栈顶元素表示匹配了当前右括号:
如果栈不为空,当前右括号的下标减去栈顶元素即为「以该右括号为结尾的最长有效括号的长度」
在这里插入图片描述
4、如果栈为空,说明当前的右括号为没有被匹配的右括号,我们将其下标放入栈中来更新我们之前提到的「最后一个没有被匹配的右括号的下标」
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
5、依次遍历直到遍历到最后一个数
在这里插入图片描述
代码

class Solution:
    def longestValidParentheses(self, s: str) -> int:
       #建立一个栈,栈底元素为-1
        stack = [-1]
        length = 0
        max_length = 0
       #遍历,如果是左括号,将下标放入栈中,如果不是弹出栈顶元素(即与之对应的右括号)
        for i in range(len(s)):
            if s[i] == '(':
                stack.append(i)
            else:
                stack.pop()
                #若栈为空,把最后一个没有被匹配的右括号的下标放入栈来更新
                if stack == []:
                    stack.append(i)
               #如果栈不为空,当前右括号的下标减去栈顶元素
                else:
                    length = i-stack[-1]
                    #更新最大长度
                    max_length = max(max_length,length)
        return max_length

方法四:正向逆向结合法
解题思路
1、利用两个计数器left 和 right 。
2、从左到右遍历字符串,对于遇到的每个‘(’,left +1,对于遇到的每个 ‘)’ ,right +1。
3、当left = right时,计算当前有效字符串的长度(2right),并且记录目前为止找到的最长子字符串。当right >left时,left 和 right 计数器同时变回 0。
4、从右向左遍历字符串,对于遇到的每个‘(’,left +1,对于遇到的每个 ‘)’ ,right +1。
当left = right时,计算当前有效字符串的长度(2
left),当right<left时,left 和 right 计数器同时变回 0。

代码

lass Solution:
    def longestValidParentheses(self, s: str) -> int:
        n, left, right, maxlength = len(s), 0, 0, 0
      #从左向右遍历
        for i in range(n):
            if s[i] =='(':
                left+=1
            else:
                right+=1
            if left == right:
                maxlength = max(maxlength, 2 * right)
            elif right > left:
                left = right = 0
       #从右向左遍历
        left = right = 0
        for i in range(n-1,-1,-1):
            if s[i] =='(':
                left+=1
            else:
                right+=1
            if left == right:
                maxlength = max(maxlength, 2 * left)
            elif right < left:
                left = right = 0

        return maxlength
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值