✍个人博客:https://blog.csdn.net/Newin2020?spm=1011.2415.3001.5343
📚专栏地址:剑指offer系列题解
📝原题地址:题目地址
📣专栏定位:为找工作的小伙伴整理常考算法题解,祝大家都能成功上岸!
❤️如果有收获的话,欢迎点赞👍收藏📁,您的支持就是我创作的最大动力💪
题目描述
给定一个长度为 n+1 的数组
nums
,数组中所有的数均在 1∼n 的范围内,其中 n≥1。请找出数组中任意一个重复的数,但不能修改输入的数组。
数据范围
1≤n≤1000
样例
给定 nums = [2, 3, 5, 4, 3, 2, 6, 7]。 返回 2 或 3。
思考题:如果只能使用 O(1) 的额外空间,该怎么做呢?
方法一:分治 O(nlogn)
因为数组中元素的值都在 1~n
之间,所以可以通过划分区间来判断,其中也涉及到了抽屉原理。
抽屉原理:一共 n 个柜子,现在要放 n+1 把钥匙,那么就一定会有 1 个柜子里放 2 把钥匙。在这道题中,1~n 区间内一定会至少有一个值,它存在多个数。
这里的区间不是数组下标而是元素的值,统计数组中元素的值再左区间内的个数,如果统计结果大于左区间最多应该存在的个数,说明该区间内有元素是重复的,则进入这个区间进行操作。
不断的将区间进行划分,重复上述操作,最终找到对应的元素。
我们拿题目的样例来举例,数组元素为 [2, 3, 5, 4, 3, 2, 6, 7]
,根据题意可知当数组元素个数为 n
时,数组中最大元素要小于等于 n-1
,故初始化 l=1,r=n-1
第一步: 先计算 mid=(1+7)/2=4
,因此可以根据 mid
划分成左区间 1~4
以及右区间 5~7
。
计算数组中在左区间的数的个数,其中包含 2,3,4,3,2
共 5
个数大于正常最大左区间数 4
,说明在 1~4
这个范围存在重复的元素,故更新右端点 r=mid=4
。
第二步: 对 l
和 r
继续取 mid
得 mid=(1+4)/2=2
,因此可以划分成左区间 1~2
和右区间 3~4
。
计算数组中在左区间的数的个数,其中包含 2,2
共 2
个数等于最大左区间数 2
,故更新左端点 l=mid+1=3
。
第三步: 取 mid=(3+4)/2=3
,因此可以划分成左区间 3
和右区间 4
。
计算数组中左区间的数的个数,其中包含 3,3
共 2
个数大于正常最大左区间数 1
,故更新右端点 r=mid=3
。
第四步: 由于此时 l=r
不满足循环条件 l<r
,故退出循环,返回 r=3
即最终答案。
class Solution {
public:
int duplicateInArray(vector<int>& nums) {
int l = 1, r = nums.size() - 1;
while (l < r)
{
//划分区间:[l,mid]和[mid+1,r]
int mid = l + r >> 1;
int s = 0; //统计数值在左区间的元素个数
for (auto i : nums) s += i >= l && i <= mid;
//如果统计结果大于左区间的总个数,说明该区间内存在重复元素,否则在右区间存在重复元素
if (s > mid - l + 1) r = mid;
else l = mid + 1;
}
return r;
}
};
欢迎大家在评论区交流~