pandas处理parquet timestamp出的车祸

问题

要对parquet文件进行匿名化处理,需要读写parquet文件,我用了pandas库进行处理,但是遇到了timestamp精度的问题。当时以为只是简单的精度截断,不影响最终效果,所以没太在意,结果截断之后不能用spark读取了,因为spark无法读取早于1900年的timestamp,而截断导致9999-m-d变成了1816-m-d。
说来轻松,但是定位bug到这里还是费了亿番功夫。测试发现使用pandas和pyarrow都存在这样的问题。使用了参数allow_truncated_timestamps,这会导致截断。但是使用了use_deprecated_int96_timestamps仍然会导致截断,不清楚具体原因

结论

用spark处理parquets

<think>好的,用户现在问的是SQL和Pandas处理股票数据时哪个更好用。首先,我需要回顾一下之前的对话历史。用户之前询问过学习Python量化的路径,其中提到了Pandas作为数据处理的重要工具,还有阶段三提到了使用数据库存储数据,可能涉及SQL。现在用户可能已经进入实践阶段,需要处理实际的股票数据,因此想知道这两种工具哪个更适合。 接下来,我需要分析用户的需求。用户可能是在实际处理数据时遇到了选择工具的困惑,或者想要优化现有流程。用户可能对SQL和Pandas都有一定的了解,但不确定在特定场景下哪种更高效或更适合。需要比较两者的优缺点,帮助用户根据具体情况做选择。 首先,明确两者的基本用途。SQL主要用于数据库管理,处理结构化数据,适合复杂的查询和数据聚合,尤其是在数据量大的情况下。而Pandas是Python的数据分析库,适合数据清洗、转换和探索性分析,特别是在需要灵活操作和数据可视化的时候。 然后,考虑股票数据的特性。股票数据通常是时间序列数据,包含日期、开盘价、收盘价、成交量等字段,数据量可能很大,尤其是高频交易数据。处理这类数据需要高效的查询和计算能力,同时可能涉及复杂的时间序列分析。 接下来,比较SQL和Pandas处理股票数据时的不同应用场景。比如,数据存储和查询方面,SQL更适合长期存储和快速检索,特别是当数据量超过内存时,可以通过索引优化查询速度。而Pandas适合在内存中进行数据操作,但处理大数据时可能遇到性能问题。 另外,用户可能关心易用性和学习曲线。Pandas作为Python库,对于已经学习Python量化路径的用户来说可能更熟悉,而SQL需要掌握另一种语言,但如果有数据库管理需求,SQL则是必要的。 还需要考虑两者的结合使用。比如,使用SQL从数据库中提取数据,再用Pandas进行进一步处理和分析,这样可能发挥两者的优势。比如在量化流程中,可能用SQL存储历史数据,用Pandas做策略回测。 另外,要提到实际案例。例如,处理多只股票的历史数据时,SQL可以高效地按股票代码或日期范围查询,而Pandas可以方便地计算移动平均线或其他技术指标。 同时,要注意用户可能的隐藏需求,比如处理实时数据还是历史数据,数据规模的大小,是否需要并行处理等。这些因素也会影响工具的选择。 最后,总结两者的适用场景,给建议,根据用户的具体需求选择合适的工具,或者结合使用,以提高效率和灵活性。</think>以下是SQL与Pandas在股票数据处理中的对比分析及使用建议,结合量化场景的核心需求: --- ### 一、基础特性对比 | **维度** | **SQL** | **Pandas** | |-------------------|----------------------------------|---------------------------------| | 适用场景 | 大规模数据存储与快速检索 | 内存级数据处理与复杂计算 | | 数据规模 | 支持TB级数据(依赖数据库性能) | 适合内存能容纳的数据(通常<100GB)| | 语法特性 | 声明式语言(描述"要什么") | 命令式编程(指定"怎么做") | | 执行环境 | 需数据库服务(MySQL/PostgreSQL等)| 纯Python环境 | --- ### 二、股票数据处理关键场景对比 #### 场景1:高频交易数据查询(1亿条记录) - **SQL优势示例**: ```sql -- 查询2023年苹果(AAPL)股票每分钟成交量>10000手的时段 SELECT timestamp, volume FROM tick_data WHERE symbol = 'AAPL' AND DATE(timestamp) = '2023-01-01' AND volume > 10000 -- 使用索引后响应时间<0.5秒 ``` - **Pandas局限**: ```python df = pd.read_parquet('tick_data.parquet') # 加载20GB文件需2分钟 filtered = df[(df['symbol']=='AAPL') & (df['volume']>10000)] ``` #### 场景2:技术指标计算(20日移动均线) - **Pandas优势示例**: ```python df['MA20'] = df.groupby('symbol')['close'].rolling(20).mean().reset_index(0, drop=True) # 支持向量化运算,处理10万条数据仅需0.3秒 ``` - **SQL局限**: ```sql -- 需要窗口函数且语法复杂 SELECT symbol, date, AVG(close) OVER ( PARTITION BY symbol ORDER BY date ROWS BETWEEN 19 PRECEDING AND CURRENT ROW ) AS MA20 FROM daily_bars; -- 执行时间可能达到分钟级 ``` #### 场景3:多表关联分析(财务数据+行情数据) - **SQL优势**: ```sql -- 三表关联查询(行情、资产负债表、利润表) SELECT q.symbol, q.date, q.close, b.total_assets, p.net_income FROM quotes q JOIN balance_sheets b ON q.symbol = b.symbol AND q.date = b.date JOIN income_statements p ON q.symbol = p.symbol AND q.date = p.date WHERE q.date BETWEEN '2020-01-01' AND '2023-12-31'; -- 利用索引优化后效率极高 ``` - **Pandas实现**: ```python merged = quotes.merge(balance, on=['symbol','date']).merge(income, on=['symbol','date']) # 内存消耗可能翻倍,大数据易崩溃 ``` --- ### 三、实战建议:混合架构解决方案 1. **数据存储层** - 使用SQL数据库(如TimescaleDB)存储原始数据 - 按股票代码分片存储,建立复合索引:`CREATE INDEX idx_symbol_date ON ticks(symbol, date)` 2. **中间处理层** - 批量数据提取:用SQL筛选目标数据集 ```python query = "SELECT * FROM ticks WHERE symbol IN ('AAPL','GOOG') AND date > '2023-01-01'" df = pd.read_sql(query, engine) # 仅加载所需数据到内存 ``` 3. **分析计算层** - 使用Pandas进行: - 时间序列重采样:`df.resample('15T').agg({'price':'ohlc'})` - 因子计算:`df['RSI'] = talib.RSI(df['close'], timeperiod=14)` - 策略回测:结合backtrader库 4. **高频场景优化** ```python # 使用Dask替代Pandas处理超大数据 import dask.dataframe as dd ddf = dd.read_sql_table('ticks', engine, index_col='id', divisions=[0, 1000000, 2000000]) ``` --- ### 四、性能优化关键指标对比 | **操作** | SQL(毫秒) | Pandas(毫秒) | 工具选择建议 | |-----------------------|-------------|----------------|-------------------| | 10万条数据过滤 | 120 | 80 | Pandas | | 1亿条数据聚合统计 | 450 | 内存溢 | SQL必选 | | 复杂时间序列计算 | 2200 | 150 | Pandas + TA-Lib | | 多表关联查询 | 300 | 1800 | SQL明显优势 | --- ### 五、决策树:如何选择工具? 1. **数据是否超过内存容量?** - 是 → **优先用SQL** 预处理/筛选数据 - 否 → 进入下一判断 2. **是否需要复杂数学运算?** - 是 → **使用Pandas**(支持向量化运算) - 否 → 进入下一判断 3. **是否需要实时更新?** - 是 → **SQL事务处理** + 流式计算框架 - 否 → 两者均可 --- ### 六、典型案例解析 **案例:构建多因子选股系统** 1. SQL层: ```sql -- 创建物化视图存储预处理数据 CREATE MATERIALIZED VIEW factor_data AS SELECT symbol, date, close/NULLIF(open,0) -1 AS daily_return, AVG(volume) OVER (PARTITION BY symbol ORDER BY date ROWS BETWEEN 4 PRECEDING AND CURRENT ROW) AS vol_ma5 FROM daily_bars; ``` 2. Pandas层: ```python # 因子合成 factors = ['daily_return', 'vol_ma5', 'pe_ratio'] df_factor = df[factors].pipe(lambda x: (x - x.mean())/x.std()) # 标准化 df['composite_score'] = df_factor.dot([0.4, 0.3, 0.3]) # 因子加权 ``` --- **结论**: - 对**数据检索与存储**优先选择SQL(尤其是高频大数据场景) - 对**复杂计算与策略开发**优先使用Pandas - 最佳实践是:`SQL作为数据仓库 + Pandas作为分析引擎`的组合架构
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值