【数字图像处理】期末复习-----知识点

目录

一、基础知识

图像在数学上可表示为二维函数f(x,y),其中x,y是空间坐标,f是像素灰度值

数字图像:采样(离散坐标)+ 量化(离散灰度)后的图像

(1)采样: 决定了图像的空间分辨率,即图像有多少像素

1、采样间隔(Δx, Δy):相邻像素点的间距

2、采样频率:单位长度内的采样点数

3、采样定理:采样频率必须>= 图像中最高频率成分(图像中灰度变化最快的区域对应的频率)的2倍,才能无失真重建原始图像

(2)量化:决定了图像的色彩深度,即每个像素可以有多少种颜色或灰度级

1.1 相邻像素间基本关系

1.1.1 邻域:4邻域,D邻域,8邻域

4邻域

D邻域

8邻域

1.1.2 连通性(邻接性):4连通,8连通,m(混合)连通

二、图像增强

2.1 空域增强(直接处理像素)

2.1.1 灰度变换(点运算)

2.1.2 直方图处理(全局增强)

(1)直方图求解

(2)直方图均衡化

!!!大题  直方图均衡化计算

(3)直方图匹配(规定化)

2.1.3 空间滤波(邻域操作) 局部增强

(1)平滑空间滤波器

平滑滤波器分类​​​​​​​

线性滤波(如均值滤波、高斯滤波):输出是输入像素的线性组合(加权和),满足叠加性和齐次性。

非线性滤波(如中值滤波、超限像素平滑):输出不满足线性关系,通常涉及排序、阈值判断等非线性操作。

噪声分类

1.线性滤波器

均值滤波器:用邻域内像素的平均值代替中心像素值。会导致边缘模糊。

高斯滤波器 (Gaussian Filter):使用高斯函数作为权重,邻域中心像素权重最大,离中心越远权重越小。平滑效果更自然,对边缘的模糊程度低于均值滤波。

2. 非线性滤波器

中值滤波器:用邻域内像素的中值代替中心像素值。对去除椒盐噪声 (脉冲噪声) 非常有效,且对边缘的保护效果优于均值滤波器。

(2)锐化空间滤波器

1. 一阶微分(梯度)

1)梯度算子

(3)Sobel算子

2. 二阶微分(拉普拉斯)

2.2 频域增强(修改图像的傅里叶变换)

 2.2.1 频域滤波的主要步骤

2.2.2 频谱的频域移中 

2.2.3 滤波方式

(1)低通滤波(消除噪声,但图像变模糊)

1、理想低通滤波器

2、巴特沃斯低通滤波器

3.指数低通滤波器

(2)高通滤波(消除模糊,实现锐化图像)

1、理想高通滤波器

2、Butterworth滤波器

3、指数滤波器

三、图像复原与重建

3.1 图像增强  VS  图像复原

3.2 图像退化

​编辑

3.3 图像复原(Restoration)及 退化模型基础

3.3.1 图像复原

3.3.2 退化模型

3.4 图像复原基本方法分类

【补充】 均值滤波 VS 邻域平均

3.4.1 空间域滤波复原

(1)均值滤波器

(2)顺序统计滤波器

1、中值滤波器

2、最大/最小滤波器

3、中点滤波器

3.4.2 频率域滤波复原

(1)带阻滤波器

四、图像压缩

4.1 图像压缩分类

(1)无损压缩 

 1、霍夫曼编码

2、香农-费诺编码

3、算术编码

(2)有损压缩

4.2 图像压缩编码的评价准则

4.3 图像编码模型

4.3.1 信源编码器与信源解码器

4.3.2 信道编码器与信道解码器

信道编码技术

(1)奇偶校验位 

(2)海明码

五、图像分割

图像分割方法分类

5.1 阈值分割(Thresholding)

5.1.1 单阈值分割

5.1.2 Otsu算法(大津法)✅(考试重点)

目标:使得类间方差最大,类内方差最小

5.2  边缘检测与分割

​编辑

 5.3 区域生长与合并

5.3.1 区域生长(Region Growing)

🎯 核心思想:

✅ 具体流程:

(1)单一型区域生长法原理(差值小于等于设定阈值)

将单个像素与种子像素的灰度值进行比较,决定是否合并

(2)质心型区域生长(差值小于设定阈值)

将单个像素与当前已生长区域的灰度均值(质心)比较

(3)混合型区域生长

比较两个相邻区域的相似性(如灰度均值、方差等),决定是否合并

5.3.2 区域合并/分裂

六、图像形态学

6.1 腐蚀和膨胀

6.2 开闭运算

开运算:先对图像腐蚀,膨胀其结果

闭运算:先对图像进行膨胀,然后腐蚀其结果

七、彩色图像处理


一、基础知识

数字图像处理概念:借助 计算机 处理 数字图像 (图像数字化)

图像在数学上可表示为二维函数f(x,y),其中x,y是空间坐标,f是像素灰度值

数字图像:采样(离散坐标)+ 量化(离散灰度)后的图像

图像数字化技术:采样+量化

  • 采样处理空间坐标:将连续的空间坐标离散化为像素网格
  • 量化处理像素值:将连续的像素值(亮度/颜色)离散化为有限的级别
(1)采样: 决定了图像的空间分辨率,即图像有多少像素

采样就是将空间上连续的图像转换为离散像素点的过程,即沿图像的水平和垂直方向按一定间隔取点。类比:用网格纸覆盖一张照片,只记录网格交叉点的颜色

1、采样间隔(Δx, Δy):相邻像素点的间距

间隔越小--->采样密度越高--->图像细节保留越多(但数据量增大)

2、采样频率:单位长度内的采样点数
3、采样定理:采样频率必须>= 图像中最高频率成分(图像中灰度变化最快的区域对应的频率)的2倍,才能无失真重建原始图像
(2)量化:决定了图像的色彩深度,即每个像素可以有多少种颜色或灰度级

将采样后像素的连续亮度值转换为有限离散值的过程,即确定每个像素的灰度级或颜色值。

采样  &&  量化

  • 采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现马赛克效应;
  • 采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
  • 量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;
  • 量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小。

采样不够出现马赛克;量化不够出现假轮廓

1.1 相邻像素间基本关系

1.1.1 邻域:4邻域,D邻域,8邻域

4邻域

D邻域

8邻域

1.1.2 连通性(邻接性):4连通,8连通,m(混合)连通

 

p,q为4邻接,m邻接   (q,r为4邻接,m邻接)

p,r不是4邻接,是8邻接,不为m邻接(p,r的4邻接 交集中有q 属于V)

二、图像增强

增强目标:

  • 突出图像中的有用信息;
  • 改善图像的视觉表现;
  • 增强图像中感兴趣的部分(如边缘,对比度,暗部细节)

图像增强按所处理的对象不同可分为: 灰度图像增强彩色图像增强
图像增强按增强处理所在空间不同分为: 空域增强方法频域增强方法

(1)空域增强

直接在图像所在的二维空间进行处理,即直接对每一像素的灰度值进行处理。

空域增强按技术不同可分为灰度变换和空域滤波。灰度变换是一种点处理方法。

  • 灰度变换:基于点操作,将每一个像素的灰度值按照一定的数学变换公式转换为一个新的灰度值。常用方法:对比度增强、直方图均衡化等。
  • 空域滤波:基于邻域处理,应用某一模板对每个像素及其周围邻域的所有像素进行某种数学运算,得到该像素的新的灰度值。图像平滑与锐化技术就属于空域滤波。

(2)频域增强

首先经过傅里叶变换将图像从空间域变换到频率域,然后在频率域对频谱进行操作和处理,再将其反变换到空间域,从而得到增强后的图像。

2.1 空域增强(直接处理像素)

2.1.1 灰度变换(点运算)

灰度变换是一种对图像中每个像素独立操作的点运算,公式为

其中r是原始图像的灰度值,s是变换后的图像的灰度值,T(⋅)指变换函数

2.1.2 直方图处理(全局增强)

图像直方图是灰度分布的统计图,增强方法是根据直方图进行灰度重新分布,改变图像的整体对比度。

(1)直方图求解

统计下面图像的灰度直方图,并计算熵

(2)直方图均衡化

通过把原图像的直方图通过变换函数修正为分布比较均匀的直方图,从而改变图像整体偏暗或整体偏亮,灰度层次不丰富的情况,这种技术叫直方图均衡化。

!!!大题  直方图均衡化计算

(3)直方图匹配(规定化)

将图像的直方图调整为指定目标分布的方法

  • 规定直方图 P_{k} 题目会给
  • 映射关系:对于每个原始灰度级,比较对应原始CDF与规定CDF的值, 找到累计规定直方图(规定CDF)中最接近的累积概率值,将其对应的灰度级作为映射目标

比较的是:累计直方图(原始CDF) VS  累计规定直方图(规定CDF)

2.1.3 空间滤波(邻域操作) 局部增强

核心:通过模板(核)与图像的局部邻域进行卷积运算

类型作用核心算子/方法应用举例
平滑滤波去噪、模糊图像均值滤波、中值滤波、高斯滤波降噪(高斯噪声、椒盐噪声)
锐化滤波强调边缘、纹理梯度(Sobel/Prewitt)、Laplacian增强细节、轮廓检测
(1)平滑空间滤波器
平滑滤波器分类​​​​​​
  • 线性滤波(如均值滤波、高斯滤波):输出是输入像素的线性组合(加权和),满足叠加性和齐次性。
  • 非线性滤波(如中值滤波、超限像素平滑):输出不满足线性关系,通常涉及排序、阈值判断等非线性操作。

平滑滤波的目的:模糊图像和降低噪声

  • 噪声分类
噪声类型特征描述常考考点 & 去噪方法
高斯噪声灰度值服从正态分布加性模型;用高斯滤波Wiener滤波去除
椒盐噪声(脉冲噪声)图像出现黑白孤立点中值滤波去除
周期性噪声有规律波纹干扰傅里叶频谱上有亮点;用带阻滤波器去除
乘性噪声噪声与图像灰度成比例

对数变换 + 滤波方法处理

 

  • 椒盐噪声直接将像素值替换为0或255,而非在原值上叠加扰动,因此直方图会在两端突兀地出现高峰。

为什么 中值滤波 对椒盐噪声有效,而对高斯噪声效果较差?

【解析】椒盐噪声是极值点,中值滤波通过取邻域中值可直接剔除;高斯噪声是全局随机扰动,中值滤波无法区分噪声与真实信号。

1.线性滤波器
  • 均值滤波器:用邻域内像素的平均值代替中心像素值。会导致边缘模糊。

  • 均值滤波法的增强效果:

【扩展】加权均值滤波器

  • 注:超限像素平滑法 属于 非线性滤波法 
  • 高斯滤波器 (Gaussian Filter):使用高斯函数作为权重,邻域中心像素权重最大,离中心越远权重越小。平滑效果更自然,对边缘的模糊程度低于均值滤波。

加权均值滤波 VS 高斯滤波

【示例】

【数学本质】

中值滤波(非线性)  VS 高斯滤波 (线性)

  • 中值滤波对待周围的邻居是一视同仁的,它认为每个邻居对目标像素的影响力都一样大。比如一个 3x3 的均值滤波器,它会把目标像素和它周围的 8 个邻居(一共 9 个像素)的像素值加起来,然后除以 9,得到的结果就是目标像素的新值。
  • 高斯滤波器 (Gaussian Filter) 则认为,离目标像素越近的邻居,对目标像素的影响应该越大;离得越远的邻居,影响就越小。
2. 非线性滤波器
  • 中值滤波器:用邻域内像素的中值代替中心像素值。对去除椒盐噪声 (脉冲噪声) 非常有效,且对边缘的保护效果优于均值滤波器。

  • 中值滤波优缺点:对脉冲干扰及椒盐噪声的抑制效果好,在抑制随机噪声的同时能保持图像中的细节部分,防止边缘模糊。对点、线等细节较多的图像不太合适。

【示例1】

注:不处理边界

【解析】

【示例2】

【示例3】

对图像进行 3 ×3 的中值滤波处理

  • 中值滤波效果

(2)锐化空间滤波器

目的: 突出图像的边缘和细节,增强被模糊的细节

原理:基于微分运算(梯度,拉普拉斯)

1. 一阶微分(梯度)
1)梯度算子

2)Roberts(罗伯特)算子  梯度交叉算子

(3)Sobel算子

(4)Prewitt 梯度算子

2. 二阶微分(拉普拉斯)

拉普拉斯算子 (Laplacian Operator)

  • 注:拉普拉斯算子的输出在边缘处会从正变负(或从负变正),这个正负交替的点称为零交叉点,对应图像中的边缘位置。

【示例】

下列哪个 3x3 滤波器核是拉普拉斯算子的常见表示?

【解析】

(A):均值滤波器核 所有系数都为正且相等,用于图像平滑和去噪

(B)(D):Sobel 算子

(C):拉普拉斯算子核 ,中心系数与周围系数符号相反,且所有系数之和通常为零

【主要用途】

  • 图像锐化:通过增强图像中的高频成分(如边缘和细节)来使图像看起来更清晰;
  • 边缘检测:二阶导数在边缘处会产生零交叉点或显著的峰值/谷值,可用于定位边缘。

【显著特性】

  • 对噪声敏感;
  • 各向同性:对各个方向的边缘响应是相同的。

2.2 频域增强(修改图像的傅里叶变换)

(1)图像增强除可在空域进行外,也可以在变换域进行。变换域增强是首先经过某种变换将图像从空间域变换到变换域,然后在变换域对频谱进行操作和处理,再将其反变换到空间域,从而得到增强后的图像。
(2)在变换域处理中最为关键的是变换处理,一般是线性变换,并且满足一定的正交条件。
(3)在图像增强处理中,最常用的正交变换是傅立叶变换。当采用傅立叶变换进行增强时,把这种变换域增强称为频域增强。

  • 在空域处理图像时,只关注像素位置
  • 在频域处理图像时,关注的是图像中变化的速度(频率)

 2.2.1 频域滤波的主要步骤

基本步骤

  1. 计算原始图像的傅里叶变换 F(u,v)。
  2. 用一个滤波器函数 H(u,v) 乘以 F(u,v),得到 G(u,v)=H(u,v)F(u,v)。
  3. 计算 G(u,v) 的傅里叶反变换,得到增强后的图像 g(x,y)。

频域滤波的核心在于如何确定滤波器函数,即H(u,v)。H(u,v)为传递函数/滤波器函数。

2.2.2 频谱的频域移中 

  • 常用的傅立叶正反变换公式都是以零点为中心的公式,其结果中心最亮点却在图像的左上角,作为周期性函数其中心最亮点将分布在四角,这和正常的习惯不同,因此,需要把这个图像的零点移到显示的中心。例如把F(u,v)的原零点从左上角移到显示屏的中心。
  • 频域移位特性:对频域信号进行移位,时域信号需要乘以一个对应的指数函数。图像信号在进行变换之前需要对每一个像素乘以(-1)^x+y次方。简言之,一正一负,每隔一个像素乘以一个负号。

2.2.3 滤波方式

傅里叶变换的性质

  • 图像的低频成分对应图像中灰度变化缓慢的区域(如大片背景)。
  • 图像的高频成分对应图像中灰度变化剧烈的区域(如边缘、细节、噪声)。

频域增强常用方法

方法名称说明典型作用
低通滤波器(LPF)保留低频,去除高频模糊、去噪(背景平滑)
高通滤波器(HPF)去除低频,保留高频边缘增强、细节突出
带阻滤波器去除特定频率段去除周期性噪声
同态滤波对乘性噪声有效同时增强亮度压缩对比度
(1)低通滤波(消除噪声,但图像变模糊)
  • 图像从空间域变换到频率域后,其低频分量对应图像中灰度值变化比较缓慢的区域,高频分量则表征图像中物体的边缘和随机噪声等信息。
  • 低通滤波是指保留低频分量,而通过滤波器函数H(u,v)减弱或抑制高频分量的过程。
  • 低通滤波与空域中的平滑滤波器一样可以消除图像中的随机噪声,减弱边缘效应,起到平滑图像的作用。
1、理想低通滤波器

  • 理想低通滤波器效果

  • 缺点: 理想低通滤波器的平滑作用非常明显,但由于变换有一个陡峭的波形,它的反变换H(x,y)有强烈的振铃特性,使滤波后图像产生模糊效果。因此这种理想低通滤波实用中不能采用!!

注:振铃特性是指在对图像进行滤波时,在图像边缘或突变区域周围出现的虚假波纹(类似钟摆振动的衰减振荡波形)。这种现象会导致图像出现不自然的模糊和伪影。

2、巴特沃斯低通滤波器

特点:在通过频率与截止频率之间没有明显的不连续性,不会出现“振铃”现象,其效果好于理想低通滤波器。

3.指数低通滤波器
  • 特点:指数低通滤波器从通过频率到截止频率之间没有明显的不连续性,而是存在一-个平滑的过渡带。指数低通滤波器实用效果比Butterworth低通滤波器稍差,但仍无明显的振铃现象。

4.梯形低通滤波器

  • 特点:结果图像的清晰度较理想低通滤波器有所改善,振铃效应也有所减弱。应用时可调整D1值,既能达到平滑图像的目的,又可以使图像保持足够的清晰度。

(2)高通滤波(消除模糊,实现锐化图像)

图像的边缘、细节主要在高频,图像模糊是由于高频成分较弱产生的。为了消除模糊,突出边缘,可以采用高通滤波的方法,使低频分量得到抑制,从而达到增强高频分量,使图像的边沿或线条变得清晰,实现图像的锐化。

1、理想高通滤波器

2、Butterworth滤波器

3、指数滤波器

4、梯形高通滤波器

三、图像复原与重建

3.1 图像增强  VS  图像复原

  • 图像增强 不考虑图像是如何退化的,而是试图采用各种技术来增强图像的视觉效果。
  • 图像复原需要知道图像退化的机制和过程等先验知识,据此找出一种相应的逆处理方法,从而得到复原后的图像。

3.2 图像退化

原图像经过一个成像系统(如模糊、抖动、传输失真等)被模糊,又叠加随机噪声,得到我们看到的图像。

类型产生原因举例
模糊相机抖动、运动、光学失焦运动模糊、均值模糊
噪声感光器、电路干扰高斯噪声、椒盐噪声
运动退化图像在曝光时发生平移或旋转拍照时抖动模糊
大气湍流长距离拍摄遥感图像模糊

3.3 图像复原(Restoration)及 退化模型基础

3.3.1 图像复原

图像复原指的是对由于成像系统模糊、传输失真、噪声干扰等因素导致的“劣化图像”,在知道或估计其退化过程的基础上,尽可能恢复出原始清晰图像。

3.3.2 退化模型

3.4 图像复原基本方法分类

方法类型所在域主要方法适用场景/特点
空间域方法空间域均值滤波器去除高斯噪声、模糊图像,容易损失边缘信息
中值滤波器 ✅去除椒盐噪声效果好,非线性,不适合高斯噪声
邻域平均、平滑法适合轻微噪声,运算简单
频率域方法频率域逆滤波去模糊用,容易放大噪声,不稳定
截断逆滤波改进版逆滤波,对高频部分设定阈值,稳定性提高
维纳滤波 ✅同时处理噪声+模糊,适用于实际复杂退化
约束最小平方误差法加入平滑/边缘保护约束,计算复杂

【补充】 均值滤波 VS 邻域平均

比较维度均值滤波器邻域平均
定义固定模板,取窗口均值利用邻域像素估计中心像素
是否具体算法✅ 是❌ 是一种通用策略
常用窗口固定大小、矩形或正方形可以灵活调整窗口大小/形状
是否包含均值滤波✅ 包含
计算方式所有邻域像素等权平均可加权(如高斯)、自适应等
典型方法标准均值滤波

高斯滤波、自适应滤波等

 均值滤波是方法,邻域平均是思路;均值是邻域平均最朴素的一种实现。

3.4.1 空间域滤波复原

(1)均值滤波器

【示例】

(2)顺序统计滤波器
1、中值滤波器

【示例】 中值滤波 处理 椒盐噪声污染的图像

2、最大/最小滤波器

【示例】

  • 胡椒噪声是黑色点(灰度≈0),其值远低于周围正常像素

  • 盐噪声是白色点(灰度≈255),其值远高于周围正常像素

3、中点滤波器

3.4.2 频率域滤波复原

(1)带阻滤波器

图像复原的核心方法:

1)逆滤波

2)维纳滤波(Wiener Filtering)

四、图像压缩

图像压缩的核心思想是消除冗余,常见冗余类型:

冗余类型含义举例
空间冗余像素间存在强相关相邻像素灰度差小
统计冗余像素灰度值出现频率不均灰度 128 出现远多于其他
编码冗余编码使用的比特数多于实际需要固定长度编码浪费空间
心理视觉冗余人眼对某些细节不敏感JPEG 去除高频细节

4.1 图像压缩分类

类别是否可还原典型算法应用
有损压缩否(信息部分丢失)JPEG、JPEG2000摄影、视频
无损压缩是(完全还原)Huffman、LZW、PNG医疗图像、文档扫描

(1)无损压缩 

无损压缩可以精确无误地从压缩数据中恢复出原始数据。常见的无损压缩技术包括:基于统计概率的方法和基于字典的技术。

  • 基于统计概率的方法:依据信息论中的变长编码定理和信息熵有关知识,用较短代码代表出现概率大的符号,用较长代码代表出现概率小的符号,从而实现数据压缩。统计编码方法中具有代表性的是利用概率分布特性的霍夫曼(Huffman)编码方法,另一种是算术编码。
  • 基于字典的技术:一种是游程编码,适用于灰度级不多、数据相关性很强的图像数据的压缩。最不适用于每个像素都与它周围的像素不同的情况。另一.种称之为LZW编码,LZW在对数据文件进行编码的同时,生成了特定字符序列的表以及它们对应的代码。
 1、霍夫曼编码

  • Huffman编码

注:哈夫曼编码的“最优性”指:在给定符号概率分布下,其平均码长(Average Code Length, ACL)是所有前缀编码中最小的

2、香农-费诺编码

  • 核心:分成两半,使得两边的概率差最小

3、算术编码

算术编码是一种无损数据压缩技术,将整个输入数据流映射到一个单一的实数区间(通常为[0,1)),通过不断细分概率区间来表示符号序列。

1)特点

注:前缀编码是一种特殊类型的编码系统,也称为"前缀自由编码"或"无前缀编码"。在这种编码中,没有任何一个编码是另一个编码的前缀。

2)编码步骤

  • 输入:符号序列 + 各符号的概率分布。
  • 输出:一个代表整个序列的实数。

【示例】

(2)有损压缩

4.2 图像压缩编码的评价准则

(1)在图像压缩编码中,解码图像与原始图像可能会有差异,因此,需要评价压缩后图像的质量。描述解码图像相对原始图像偏离程度的测度一般称为保真度(逼真度)准则。   

(2)常用的准则可分为两大类:客观保真度准则和主观保真度准则。  

A、客观保真度准则

B、主观保真度准则:一种常用的方法是对一组(不少于20人)观察者显示图像,并将他们对该图像的评分取平均,用来评价幅图像的主观质量。

4.3 图像编码模型

一个图像压缩系统包括两个不同的结构块:编码器和解码器。

      图像f(x,y)输入到编码器中,编码器可以根据输入数据生成一组符号。在通过信道进行传输之后,将经过编码的表达符号送入解码器,经过重构后,生成输出图像。

  • 编码器由一个信源编码器和一个信道编码器构成,解码器包括一个信道解码器,后面跟一个信源解码器。
  • 如果编码器和解码器之间的信道是无噪声的,则信道编码器和信道解码器可以略去。

4.3.1 信源编码器与信源解码器

A、信源编码器的任务是减少或消除输入图像中的编码冗余、像素间冗余或心理视觉冗余。
从原理来看主要分为三个阶段:
●第一阶段将输入数据转换为可以减少输入图像中像素间冗余的数据的集合。
●第二阶段设法 去除原图像信号的相关性。
●第三阶段是找一种更近于熵,又利于计算机处理的编码方式。

4.3.2 信道编码器与信道解码器

  • 背景:信源编码器几乎不包含冗余,它对噪声传送有很高的敏感性。
  • 信道带有噪声或易于出现错误时,信道编码和解码处理作用明显。
  • 信道编码器和解码器通过向信源编码数据中插入预制的冗余数据,即验证码,来减少信道噪声的影响。

信道编码技术
(1)奇偶校验位 
  • 奇偶校验位:用来添加至二进制数据中的比特位,通过确保整个二进制数据信息中“1”的个数是奇数还是偶数,来判断数据是否在传输过程中发生改变。

存在两种类型的检测方式:奇校验和偶校验。​​​​​​​

  • 偶校验:使覆盖的比特中 1 的总数为偶数。

  • 奇校验:使覆盖的比特中 1 的总数为奇数。

        在奇校验检测方式中,检查需要发送数据序列中1的个数。如果序列中1的个数是奇数,为了保证加上“冗余位”后,整串序列中1的个数最后为奇数,冗余位上应该设置为“0";如果在没有添加“冗余位”之前,数据序列中的1的个数为偶数,那么为了最后把1的个数凑成奇数,冗余位上应该设置为“1”。

缺点: 数据在传输过程中发生了改变,但并不知道是哪一位发生了 改变,无法纠正错误。数据传输过程中有2位发生改变,此法无效。

(2)海明码
  • 问题背景:数据在传输或存储时,可能因干扰(如电磁噪声)发生比特翻转(比如 0 变 1 或 1 变 0)。

  • 传统奇偶校验的不足:只能检测奇数个错误,无法定位错误位置,更不能纠正错误。

  • 海明码的改进:通过多个校验位,不仅能检测错误,还能精确定位错误位置并纠正!

奇偶校验位只有1个冗余位,而海明码具有多个冗余位。即向被编码数据中加入足够的位数(冗余位)以确保可用的码字间变化的位数最小(海明距离)。

【注】

海明距离 是指两个等长码字之间不同比特的数量

例如:

  • 000 和 011 的海明距离是 2(第2、3位不同)

  • 1011 和 1101 的海明距离是 3(第2、3、4位不同)

海明码默认通常使用偶校验(因为异或运算天然对应偶校验)

  • 海明码的核心思想:(纠正单比特错误!)

位置1 (P1)2 (P2)3 (D1)4 (P3)5 (D2)6 (D3)7 (D4)
??1?011
​​​

五、图像分割

图像分割是将图像划分为若干具有一致性相似性的区域,从而提取出感兴趣目标或背景区域。

分割的结果应该使得:

  • 同一区域内像素性质相似(如灰度、纹理、颜色)

  • 不同区域间性质差异显著

图像分割方法分类

类别方法原理特点
基于灰度阈值分割根据灰度区分目标与背景简单、快速,适合对比强图像
基于边缘边缘检测 → 边界跟踪先找边缘点,再闭合成区域提取轮廓清晰目标
区域方法区域增长、区域合并同一特性区域合成对噪声敏感,需种子点
特殊方法分水岭、图割拟模拟自然或图论过程精度高但计算复杂

5.1 阈值分割(Thresholding)

5.1.1 单阈值分割

5.1.2 Otsu算法(大津法)✅(考试重点)

目标:使得类间方差最大,类内方差最小

  • 优点:自适应,不需要人工设定阈值

5.2  边缘检测与分割

常见边缘检测算子:

算子方向特点
Roberts对角适用于斜边
Prewitt水平、垂直抗噪能力差
Sobel ✅水平、垂直有平滑作用,常考
Laplacian(拉普拉斯)二阶对噪声敏感,检测0交叉点
Canny ✅多阶段边缘精度高、抗噪好(最优)

 Canny 边缘检测算法

Canny 边缘检测是一个集“去噪+检测+抑制+追踪”于一体的高质量边缘检测算法,

 5.3 区域生长与合并

5.3.1 区域生长(Region Growing)

  • 种子点开始,递归合并邻近像素

  • 条件:灰度/纹理相似、阈值约束

🎯 核心思想:

从一组“种子点”出发,把与它们相似的邻域像素加入区域中,逐步“长大”,直到不能再扩展为止。

✅ 具体流程:

  1. 选择种子点(手动或自动设定)

  2. 设定生长准则(如灰度相似度、纹理一致等)

  3. 遍历邻域像素

    • 满足条件 → 加入当前区域

    • 否则跳过

  4. 重复遍历直到没有新像素加入

项目内容
输入原始图像 + 种子点 + 生长条件
输出每个区域内像素都满足一致性条件
常见生长条件灰度差 < T(阈值)颜色/纹理相似度
优点分割边界平滑、连通性好、简单直观
缺点依赖初始种子点,容易产生“过分割”或“漏分割”
适用场景医学图像(肿瘤、器官)、遥感图像等

 【示例】

图(a)给出需要分割的图像,设已知两个种子像素,现在进行区域生长。

  • 判断准则:如果所考虑的像素与种子像素灰度值差的绝对值小于某个门限T,则将该像素包括进种子像素所在的区域。

图(b)给出T=3时区域生长的结果,整幅图被较好的分成2个区域。
图(c)给出T=1时区域生长的结果,有些像素无法判定。
图(d)给出T=6时区域生长的结果,整幅图都被分成1个区域。
灰度相似性是构成与合并区域的基本准则,相邻性是指所取的邻域方式。根据所用的邻域方式和相似性准则的不同,产生各种不同的区域生长法。
将灰度相关的值作为区域生长准则,区域生长可分为

  • 单一型(像素与像素)
  • 质心型(像素与区域)
  • 混合型(区域与区域)
(1)单一型区域生长法原理(差值小于等于设定阈值)
将单个像素与种子像素的灰度值进行比较,决定是否合并

以图像的某个像素为生长点,将特征相似的相邻像素合并为同一区域;被接收合并的像素点的灰度值取生长点的值,然后以合并的像素为生长点,重复以上的操作,最终形成具有相似特征的像素的最大连通集合。
简单生长法的相似性准则:| f(m,n) - f(s,t)|<T

上式中,f(s,t)为生长点(s,t)的灰度值; f(m,n)为(s,t)的邻域点(m,n)的灰度值,T为相似阈值。

(2)质心型区域生长(差值小于设定阈值)
单个像素当前已生长区域的灰度均值(质心)比较

算法步骤:

  1. 选择种子点,初始化区域 R。

  2. 计算区域 𝑅R 的当前平均灰度 μR​。

  3. 检查邻域像素,若 ∣𝐼(𝑥,𝑦)−𝜇𝑅∣≤𝑇,则合并。

  4. 每次合并后更新 𝜇𝑅。

(3)混合型区域生长
比较两个相邻区域的相似性(如灰度均值、方差等),决定是否合并

算法步骤

  1. 初始化多个小区域(如超像素或初始分割块)。

  2. 计算相邻区域的特征(如均值、纹理)。

  3. 若特征差异 ≤ 阈值,则合并。

5.3.2 区域合并/分裂

  • 合并:小区域合成大区域(基于相似度)

  • 分裂:大区域划分成多个小区域(基于方差、边界信息)

缺点:对初始条件敏感,对噪声图像效果较差

六、图像形态学

图像分割 基于形态学的分割!!

二值图像是指每个像素点只有两个取值的图像,通常是:

  • 0 表示“黑色”

  • 1255 表示“白色”

👉 通俗理解就是:图像中只有黑与白两种颜色,没有灰度过渡。

6.1 腐蚀和膨胀

6.2 开闭运算

开运算:先对图像腐蚀,膨胀其结果

闭运算:先对图像进行膨胀,然后腐蚀其结果

七、彩色图像处理

彩色图像是由多个颜色通道(Bands)组合而成的图像,每个通道对应一个基本颜色分量。常见有:

  • RGB 图像:最常见的彩色图像形式,三个通道分别表示 Red、Green、Blue

  • 每个通道本质上就是一张灰度图

例如,一张 512 × 512 的 RGB 彩色图像,是由三张 512 × 512 的灰度图组成。

彩色图像的表示方式

颜色模型是表示颜色的数学方式,不同模型适用于不同任务。

模型组成特点应用
RGBRed, Green, Blue最常见的显示模型图像显示、网页、数字摄影
CMY/CMYK青(Cyan), 品红(Magenta), 黄(Yellow), 黑(Key)打印模型彩色打印
HSV / HSI色调(Hue), 饱和度(Saturation), 亮度(Intensity)更符合人眼感知彩色增强、分割
YUV / YCbCr亮度Y,色差U/VY和U/V分离,适合压缩视频编码、JPEG

 RGB → 灰度图像(常考!)

最常用加权平均法:

I(x,y)=0.2989R+0.5870G+0.1140B

  • 原因:人眼对绿色最敏感,权重最大

RGB颜色空间

  • RGB:①红 Red ②绿 Green ③蓝 Blue   加法混色模型
  • 每个像素由三个数值(R,G,B)组成,数字范围通常是[0,255]
  • RGB图像 常用于显示器(电脑屏幕,电视等)和相机,扫描仪

  • 位深度 通常指每个颜色通道所使用的位数

CMYK颜色空间

  • 青 Cyan
  • 品红 Magenta
  • 黄 Yellow
  • 黑 Key,Black
  • CMYK颜色空间广泛用于 印刷和出版行业

HSI颜色空间 (HSV/HSL)

  • 色调 Hue
  • 饱和度 Saturation
  • 亮度/强度 Intensity
  • 符合人眼对颜色的感知方式(亮度和颜色信息分离)

饱和度和亮度的极端情况

  • S=0,无论H是多少,颜色都是灰色(由 I 决定深浅)
  • I=0,无论H和S是多少,颜色都是黑色
  • I=1(或100%)且S=0,颜色都是白色

YCbCr颜色空间

  • 亮度分量 Luma
  • 蓝色色差  Cb
  • 红色色差 Cr
  • 广泛应用于 视频压缩(如JPEG,MPEG)和图像压缩中

RGB vs CMYK vs HSI vs YCbCr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

A林玖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值