[yolov5/yolov8修改]替换yolov5/yolov8中的主干网络为EfficientNetv2

本文介绍了如何在YOLOv5和YOLOv8目标检测网络中,将原始的主干网络替换为EfficientNetv2。通过在common.py添加代码、在yolo.py声明新类以及修改配置文件实现这一操作。训练时需使用修改后的配置文件以确保正确运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolo系列的网络作为单阶段目标检测网络中的佼佼者,在目标检测方面发挥着很大的作用,而yolov5是其中较好的一代网络,yolov8是其中最新的一代网络。但是作为我们学习和使用来说,原始的yolov5或者yolov8网络并不一定就是最合适的,基于此,在yolov5的基础上,针对主干网络进行了替换,替换成EfficientNetv2网络,yolov8的替换方式也是类似的。主要步骤如下:

首先,我们需要在common.py文件中添加如下代码段:(建议添加在common.py文件的最后

class stem(nn.Module):
    def __init__(self, c1, c2, kernel_size=3, stride=1, groups=1):
        super(stem, self).__init__()
        padding = (kernel_size-1) // 2
        self.conv = nn.Conv2d(c1, c2, kernel_size, stride, padding=padding, groups=groups, bias=False)
        self.bn = nn.BatchNorm2d(c2, eps=1e-3, momentum=0.1)
        self.act = nn.SiLU(True)

    def forward(self, x):
        #print(x.shape)
        x = self.conv(x)
        x = self.bn(x)
        x = self.act(x)
        return x

de
### YOLOv8主干网络替换EfficientNetV2的实现方式 #### 方法概述 将YOLOv8主干网络替换EfficientNetV2的核心在于重新定义特征提取部分,同时保持YOLOv8的整体检测流程不变。具体来说,通过使用EfficientNetV2作为主干网络来替代原有的CSPDarknet结构,并调整其输出以适配YOLOv8的颈部(Neck)和头部(Head)。这种方法可以显著提升模型在目标检测任务中的精度和效率[^1]。 #### 实现步骤详解 ##### 1. 替换主干网络 首先,需要加载预训练的EfficientNetV2模型并将其嵌入到YOLOv8的架构中。这一步可以通过修改YOLOv8的配置文件完成,或者直接在代码层面进行操作。以下是Python代码示例: ```python from ultralytics import YOLO import tensorflow as tf # 加载EfficientNetV2模型 eff_net_v2 = tf.keras.applications.EfficientNetV2B0(include_top=False, weights='imagenet') # 定义自定义主干网络 class CustomBackbone(tf.keras.Model): def __init__(self, backbone_model): super(CustomBackbone, self).__init__() self.backbone = backbone_model def call(self, inputs): features = self.backbone(inputs) return features custom_backbone = CustomBackbone(eff_net_v2) # 将自定义主干网络应用到YOLOv8 model = YOLO('yolov8n.yaml') # 加载YOLOv8基础配置 model.model.set_backbone(custom_backbone) # 设置新主干网络 ``` 此代码片段展示了如何用EfficientNetV2替换YOLOv8默认的主干网络[^3]。 ##### 2. 调整特征提取层 由于EfficientNetV2的设计与原始YOLOv8不同,因此可能需要微调特征金字塔网络(FPN),以便更好地适应YOLOv8的多尺度检测需求。通常情况下,需确保EfficientNetV2的最后一层或多层能够提供足够的空间分辨率用于后续处理。 例如,在某些版本的EfficientNetV2中,可以选择特定阶段的输出张量作为输入传递给YOLOv8的颈部模块。这种做法有助于保留更多细节信息,从而改善小物体检测效果[^2]。 ##### 3. 集成测试与优化 最后一步是对整个系统进行全面评估,包括但不限于验证损失函数收敛情况、mAP指标变化以及推理时间对比分析等环节。如果发现性能下降,则应考虑适当调节超参数或采用其他技术手段加以弥补,比如增加数据增强策略或是引入注意力机制等等[^4]。 #### 注意事项 - **兼容性问题**:当更换主干网络时可能会遇到维度不匹配等问题,此时需要仔细检查各组件之间的接口关系; - **资源消耗**:尽管EfficientNet系列以其高效著称,但在实际部署过程中仍需关注硬件条件是否满足相应要求; - **迁移学习技巧**:充分利用预训练权重可以帮助快速达到理想状态,但也要注意领域差异带来的影响。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱改网络的法式小面包

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值