YOLOV6

YOLOv6是基于RepVGG风格设计的检测算法,实现了在GPU、CPU和ARM平台的高效部署。它采用EfficientRep Backbone和Rep-PAN Neck,改进了CSPBlock和SPPF。SimOTA标签分配策略用于正负样本的选择,同时利用GIoU、DIoU、CIoU、EIoU和SIoU等多种损失函数进行优化。RepVGG结构重参数化提高推理速度和内存效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ps640         Map0.5:0.95  28.0~50.7  Map0.5  45.7~68.9    CPUMs 45~766   V100Ms  6.3~12.1   
ps1280       Map0.5:0.95  36.0~53.7  Map0.5  54.4~71.3    CPUMs 153~1784   V100Ms  8.1~15.8   

Yolov6
基于 RepVGG style[4] 设计了可重参数化、更高效的骨干网络 EfficientRep Backbone 和 Rep-PAN Neck
YOLOv6 支持 GPU(TensorRT)、CPU(OPENVINO)、ARM(MNN、TNN、NCNN)等不同平台的部署
Backbone:
1.将Backbone中stride=2的普通Conv层替换成了stride=2的RepConv层
2.将原始的CSP-Block都重新设计为RepBlock
   2.1 RepBlock的第一个RepConv会做channel维度的变换和对齐
   2.2 将原始的SPPF优化设计为更加高效的SimSPPF
Neck:
1.Rep-PAN基于PAN拓扑方式
  1.1 用RepBlock替换了CSP-Block
  1.2 对整体Neck中的算子进行了调整
Head:
位置:  yolo(x,6)/models/yolo_head.py
simOTA(标签分配)  整体逻辑
1、确定正样本候选区域。
2、计算anchor与gt的iou。
3、在候选区域内计算cost。
4、使用iou确定每个gt的dynamic_k。
5、为每个gt取cost排名最小的前dynami

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值