初始问题
给定N堆石子,每堆有
SG定理
相信很多人都已经知道了这个定理。
假设现在有一个有向无环的游戏图G(V,E),若(i,j)∈E则表示状态i可以转移到状态
我们还要定义必胜态与必败态的概念。
必胜态表示,从当前状态可以转移到一个必败态。
必败态表示,从当前状态无法转移到一个必败态。
我们规定整个图不存在平局态。
设SGX
SGX=MEX({ SGY,Y|(X,Y)∈E})
MEX是一个作用于集合的函数。MEX(S)的值为最小的自然数b,满足
最终若SGX为0,则X为一个必败态。否则
证明
我们归纳的来证明这个定理。
假设对于之前的状态这是成立的。
现在新增了一个状态X.
若
若SGX=0,则∀y:(X,Y)∈E,SGY>0.也就是说他只能转移到必胜态。因此X为一个必败态。
最终由于没有出边的状态
回归原问题
好像有了上面的定理我们就能做了???其实是不能的。
因为原问题中我们的一个状态X=(A1,A2,⋯,