python机器学习及深度学习在空间模拟与时间预测领域中的应用

了解机器学习的发展历史、计算原理、基本定义,熟悉机器学习方法的分类,常用机器学习方法,以及模型的评估与选择;熟悉数据预处理的流程,掌握python程序包的使用;理解机器学习在生态水文中的应用,掌握机器学习模型构建方法,学会构建机器学习模型用于地表参数的空间模拟与时间预测,并掌握生态水文过程分析。

基于python机器学习及深度学习在空间模拟与时间预测领域中的技术应用

机器学习方法

机器学习的发展历史、计算原理、基本定义与术语。

​​​​​​​机器学习方法的分类

机器学习的任务主要可以分为监督学习和非监督学习两大类。根据是否拥有标记信息来区分监督/非监督学习。分类和回归是监督学习的代表,聚类是非监督学习的代表。

​​​​​​​模型评估与选择

在选择机器学习模型时,首先要明确模型的目的,期望完成何种任务。因此要从误差,模型精度等方面进行评估和选择。

学习器的实际预测输出与样本的真实输出之间的差异称为“误差”,在训练集上的误差又称为“经验误差”,在新样本上的误差称为“泛化误差”。拟合程度指的是机器学习过程中产生的模型对于测试集的适应效果怎么样,其中有“过拟合”和“欠拟合”两种情况。

 

 

同时,还会利用“测试集”来测试学习器对新样本的判别能力,以“测试误差”作为泛化误差的近似,常用的方法有留出法,交叉验证法,自助法等。

Python使用说明与代码库

Python简介

Python 是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。

Python 是一种解释型语言: 这意味着开发过程中没有了编译这个环节。

Python 是交互式语言: 这意味着,您可以在一个 Python 提示符 >>> 后直接执行代码。

Python是面向对象语言: 这意味着Python支持面向对象的风格或代码封装在对象的编程技术。

Python的发展历史:

Python 是由荷兰人Guido van Rossum 在八十年代末和九十年代初,在荷兰国家数学和计算机科学研究所设计出来的。

1991年,Python的第一个解释器诞生了。他是由C语言实现的,有很多语法来自C,又受到了很多ABC语言的影响。

Python1.0版本于1994年1月发布,这个版本的主要新功能是lambda, map, filter和reduce,但是Guido不喜欢这个版本。

Python2.0版本于2000年10月份发布,这个版本的主要新功能是内存管理和循环检测垃圾收集器以及对Unicode的支持。然而,尤为重要的变化是开发的流程的改变,Python此时有了一个更透明的社区。

Python3.0版本于2008年12月份发布,Python3.x不向后兼容Python2.x,这意味着Python3.x可能无法运行Python2.x的代码。Python3代表着Python语言的未来
    Python 2.7 被确定为最后一个 Python 2.x 版本。

Python3 基本语法格式:

注释格式:单行注释以 # 开头,多行注释可以用多个 # 号,或者"""和"""。

 

行与缩进:缩进来表示代码块,不需要使用大括号 {} 。

 

导入需要用到的库或函数:在 python 用 import 或者 from...import 来导入相应的模块。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值