Re17:读论文 Challenges for Information Extraction from Dialogue in Criminal Law

该博客介绍了2021年ACL会议上的一篇论文,关注从刑事听证会记录中抽取事实信息的任务。研究对比了无监督、弱监督以及预训练模型(如DistilBERT和Longformer)在信息抽取方面的效果。数据集是加利福尼亚州假释听证会的自由形式对话,并针对11个特征进行了部分标注。实验中还涉及了基于Snorkel的无监督方法和使用BERT进行任务特定微调的分类模型。F1值在计算时对Date和numerical特征进行了分箱处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

诸神缄默不语-个人CSDN博文目录

论文名称:Challenges for Information Extraction from Dialogue in Criminal Law
论文ACL官方下载地址:https://aclanthology.org/2021.nlp4posimpact-1.8/

本文是2021年ACL论文,任务是从听证会记录文本中抽取事实信息factual information(11个手动挑选出的特征),分别测试了无监督方法、弱监督方法和使用预训练模型的方法在这一任务上的效果。
数据集是自制数据,是free-form dialogue of California parole hearings,一部分数据被标注了11个特征。

本文使用的算法为:

  1. an unsupervised data programming paradigm extended to weak supervision:无监督 Snorkel,有监督 WSLF(逻辑回归)
  2. pretrained question answering models based on DistilBERT and Longformer:QA1-2
  3. classification models based on BERT each fine-tuned to predict a single task:Task-FT

在这里插入图片描述

F1值在计算时,Date和numerical经过了分箱。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

诸神缄默不语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值